| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamumat1cl.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | mamumat1cl.r |  |-  ( ph -> R e. Ring ) | 
						
							| 3 |  | mamumat1cl.o |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | mamumat1cl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | mamumat1cl.i |  |-  I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) | 
						
							| 6 |  | mamumat1cl.m |  |-  ( ph -> M e. Fin ) | 
						
							| 7 |  | mamulid.n |  |-  ( ph -> N e. Fin ) | 
						
							| 8 |  | mamurid.f |  |-  F = ( R maMul <. N , M , M >. ) | 
						
							| 9 |  | mamurid.x |  |-  ( ph -> X e. ( B ^m ( N X. M ) ) ) | 
						
							| 10 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 11 | 2 | adantr |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> R e. Ring ) | 
						
							| 12 | 7 | adantr |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> N e. Fin ) | 
						
							| 13 | 6 | adantr |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> M e. Fin ) | 
						
							| 14 | 9 | adantr |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> X e. ( B ^m ( N X. M ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 | mamumat1cl |  |-  ( ph -> I e. ( B ^m ( M X. M ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> I e. ( B ^m ( M X. M ) ) ) | 
						
							| 17 |  | simprl |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> l e. N ) | 
						
							| 18 |  | simprr |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> m e. M ) | 
						
							| 19 | 8 1 10 11 12 13 13 14 16 17 18 | mamufv |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( l ( X F I ) m ) = ( R gsum ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ) ) | 
						
							| 20 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 21 | 11 20 | syl |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> R e. Mnd ) | 
						
							| 22 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> R e. Ring ) | 
						
							| 23 |  | elmapi |  |-  ( X e. ( B ^m ( N X. M ) ) -> X : ( N X. M ) --> B ) | 
						
							| 24 | 9 23 | syl |  |-  ( ph -> X : ( N X. M ) --> B ) | 
						
							| 25 | 24 | ad2antrr |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> X : ( N X. M ) --> B ) | 
						
							| 26 |  | simplrl |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> l e. N ) | 
						
							| 27 |  | simpr |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> k e. M ) | 
						
							| 28 | 25 26 27 | fovcdmd |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( l X k ) e. B ) | 
						
							| 29 |  | elmapi |  |-  ( I e. ( B ^m ( M X. M ) ) -> I : ( M X. M ) --> B ) | 
						
							| 30 | 15 29 | syl |  |-  ( ph -> I : ( M X. M ) --> B ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> I : ( M X. M ) --> B ) | 
						
							| 32 |  | simplrr |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> m e. M ) | 
						
							| 33 | 31 27 32 | fovcdmd |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( k I m ) e. B ) | 
						
							| 34 | 1 10 | ringcl |  |-  ( ( R e. Ring /\ ( l X k ) e. B /\ ( k I m ) e. B ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) e. B ) | 
						
							| 35 | 22 28 33 34 | syl3anc |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) e. B ) | 
						
							| 36 | 35 | fmpttd |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) : M --> B ) | 
						
							| 37 |  | simp2 |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> k e. M ) | 
						
							| 38 | 32 | 3adant3 |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> m e. M ) | 
						
							| 39 | 1 2 3 4 5 6 | mat1comp |  |-  ( ( k e. M /\ m e. M ) -> ( k I m ) = if ( k = m , .1. , .0. ) ) | 
						
							| 40 | 37 38 39 | syl2anc |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( k I m ) = if ( k = m , .1. , .0. ) ) | 
						
							| 41 |  | ifnefalse |  |-  ( k =/= m -> if ( k = m , .1. , .0. ) = .0. ) | 
						
							| 42 | 41 | 3ad2ant3 |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> if ( k = m , .1. , .0. ) = .0. ) | 
						
							| 43 | 40 42 | eqtrd |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( k I m ) = .0. ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) = ( ( l X k ) ( .r ` R ) .0. ) ) | 
						
							| 45 | 1 10 4 | ringrz |  |-  ( ( R e. Ring /\ ( l X k ) e. B ) -> ( ( l X k ) ( .r ` R ) .0. ) = .0. ) | 
						
							| 46 | 22 28 45 | syl2anc |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( ( l X k ) ( .r ` R ) .0. ) = .0. ) | 
						
							| 47 | 46 | 3adant3 |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( ( l X k ) ( .r ` R ) .0. ) = .0. ) | 
						
							| 48 | 44 47 | eqtrd |  |-  ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) = .0. ) | 
						
							| 49 | 48 13 | suppsssn |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) supp .0. ) C_ { m } ) | 
						
							| 50 | 1 4 21 13 18 36 49 | gsumpt |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( R gsum ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ) = ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) ) | 
						
							| 51 |  | oveq2 |  |-  ( k = m -> ( l X k ) = ( l X m ) ) | 
						
							| 52 |  | oveq1 |  |-  ( k = m -> ( k I m ) = ( m I m ) ) | 
						
							| 53 | 51 52 | oveq12d |  |-  ( k = m -> ( ( l X k ) ( .r ` R ) ( k I m ) ) = ( ( l X m ) ( .r ` R ) ( m I m ) ) ) | 
						
							| 54 |  | eqid |  |-  ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) = ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) | 
						
							| 55 |  | ovex |  |-  ( ( l X m ) ( .r ` R ) ( m I m ) ) e. _V | 
						
							| 56 | 53 54 55 | fvmpt |  |-  ( m e. M -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) = ( ( l X m ) ( .r ` R ) ( m I m ) ) ) | 
						
							| 57 | 56 | ad2antll |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) = ( ( l X m ) ( .r ` R ) ( m I m ) ) ) | 
						
							| 58 |  | equequ1 |  |-  ( i = m -> ( i = j <-> m = j ) ) | 
						
							| 59 | 58 | ifbid |  |-  ( i = m -> if ( i = j , .1. , .0. ) = if ( m = j , .1. , .0. ) ) | 
						
							| 60 |  | equequ2 |  |-  ( j = m -> ( m = j <-> m = m ) ) | 
						
							| 61 | 60 | ifbid |  |-  ( j = m -> if ( m = j , .1. , .0. ) = if ( m = m , .1. , .0. ) ) | 
						
							| 62 |  | eqid |  |-  m = m | 
						
							| 63 | 62 | iftruei |  |-  if ( m = m , .1. , .0. ) = .1. | 
						
							| 64 | 61 63 | eqtrdi |  |-  ( j = m -> if ( m = j , .1. , .0. ) = .1. ) | 
						
							| 65 | 3 | fvexi |  |-  .1. e. _V | 
						
							| 66 | 59 64 5 65 | ovmpo |  |-  ( ( m e. M /\ m e. M ) -> ( m I m ) = .1. ) | 
						
							| 67 | 66 | anidms |  |-  ( m e. M -> ( m I m ) = .1. ) | 
						
							| 68 | 67 | oveq2d |  |-  ( m e. M -> ( ( l X m ) ( .r ` R ) ( m I m ) ) = ( ( l X m ) ( .r ` R ) .1. ) ) | 
						
							| 69 | 68 | ad2antll |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( l X m ) ( .r ` R ) ( m I m ) ) = ( ( l X m ) ( .r ` R ) .1. ) ) | 
						
							| 70 | 24 | fovcdmda |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( l X m ) e. B ) | 
						
							| 71 | 1 10 3 | ringridm |  |-  ( ( R e. Ring /\ ( l X m ) e. B ) -> ( ( l X m ) ( .r ` R ) .1. ) = ( l X m ) ) | 
						
							| 72 | 11 70 71 | syl2anc |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( l X m ) ( .r ` R ) .1. ) = ( l X m ) ) | 
						
							| 73 | 57 69 72 | 3eqtrd |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) = ( l X m ) ) | 
						
							| 74 | 19 50 73 | 3eqtrd |  |-  ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( l ( X F I ) m ) = ( l X m ) ) | 
						
							| 75 | 74 | ralrimivva |  |-  ( ph -> A. l e. N A. m e. M ( l ( X F I ) m ) = ( l X m ) ) | 
						
							| 76 | 1 2 8 7 6 6 9 15 | mamucl |  |-  ( ph -> ( X F I ) e. ( B ^m ( N X. M ) ) ) | 
						
							| 77 |  | elmapi |  |-  ( ( X F I ) e. ( B ^m ( N X. M ) ) -> ( X F I ) : ( N X. M ) --> B ) | 
						
							| 78 | 76 77 | syl |  |-  ( ph -> ( X F I ) : ( N X. M ) --> B ) | 
						
							| 79 | 78 | ffnd |  |-  ( ph -> ( X F I ) Fn ( N X. M ) ) | 
						
							| 80 | 24 | ffnd |  |-  ( ph -> X Fn ( N X. M ) ) | 
						
							| 81 |  | eqfnov2 |  |-  ( ( ( X F I ) Fn ( N X. M ) /\ X Fn ( N X. M ) ) -> ( ( X F I ) = X <-> A. l e. N A. m e. M ( l ( X F I ) m ) = ( l X m ) ) ) | 
						
							| 82 | 79 80 81 | syl2anc |  |-  ( ph -> ( ( X F I ) = X <-> A. l e. N A. m e. M ( l ( X F I ) m ) = ( l X m ) ) ) | 
						
							| 83 | 75 82 | mpbird |  |-  ( ph -> ( X F I ) = X ) |