Step |
Hyp |
Ref |
Expression |
1 |
|
mamumat1cl.b |
|- B = ( Base ` R ) |
2 |
|
mamumat1cl.r |
|- ( ph -> R e. Ring ) |
3 |
|
mamumat1cl.o |
|- .1. = ( 1r ` R ) |
4 |
|
mamumat1cl.z |
|- .0. = ( 0g ` R ) |
5 |
|
mamumat1cl.i |
|- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
6 |
|
mamumat1cl.m |
|- ( ph -> M e. Fin ) |
7 |
|
mamulid.n |
|- ( ph -> N e. Fin ) |
8 |
|
mamurid.f |
|- F = ( R maMul <. N , M , M >. ) |
9 |
|
mamurid.x |
|- ( ph -> X e. ( B ^m ( N X. M ) ) ) |
10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
11 |
2
|
adantr |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> R e. Ring ) |
12 |
7
|
adantr |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> N e. Fin ) |
13 |
6
|
adantr |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> M e. Fin ) |
14 |
9
|
adantr |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> X e. ( B ^m ( N X. M ) ) ) |
15 |
1 2 3 4 5 6
|
mamumat1cl |
|- ( ph -> I e. ( B ^m ( M X. M ) ) ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> I e. ( B ^m ( M X. M ) ) ) |
17 |
|
simprl |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> l e. N ) |
18 |
|
simprr |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> m e. M ) |
19 |
8 1 10 11 12 13 13 14 16 17 18
|
mamufv |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( l ( X F I ) m ) = ( R gsum ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ) ) |
20 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
21 |
11 20
|
syl |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> R e. Mnd ) |
22 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> R e. Ring ) |
23 |
|
elmapi |
|- ( X e. ( B ^m ( N X. M ) ) -> X : ( N X. M ) --> B ) |
24 |
9 23
|
syl |
|- ( ph -> X : ( N X. M ) --> B ) |
25 |
24
|
ad2antrr |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> X : ( N X. M ) --> B ) |
26 |
|
simplrl |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> l e. N ) |
27 |
|
simpr |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> k e. M ) |
28 |
25 26 27
|
fovrnd |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( l X k ) e. B ) |
29 |
|
elmapi |
|- ( I e. ( B ^m ( M X. M ) ) -> I : ( M X. M ) --> B ) |
30 |
15 29
|
syl |
|- ( ph -> I : ( M X. M ) --> B ) |
31 |
30
|
ad2antrr |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> I : ( M X. M ) --> B ) |
32 |
|
simplrr |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> m e. M ) |
33 |
31 27 32
|
fovrnd |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( k I m ) e. B ) |
34 |
1 10
|
ringcl |
|- ( ( R e. Ring /\ ( l X k ) e. B /\ ( k I m ) e. B ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) e. B ) |
35 |
22 28 33 34
|
syl3anc |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) e. B ) |
36 |
35
|
fmpttd |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) : M --> B ) |
37 |
|
simp2 |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> k e. M ) |
38 |
32
|
3adant3 |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> m e. M ) |
39 |
1 2 3 4 5 6
|
mat1comp |
|- ( ( k e. M /\ m e. M ) -> ( k I m ) = if ( k = m , .1. , .0. ) ) |
40 |
37 38 39
|
syl2anc |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( k I m ) = if ( k = m , .1. , .0. ) ) |
41 |
|
ifnefalse |
|- ( k =/= m -> if ( k = m , .1. , .0. ) = .0. ) |
42 |
41
|
3ad2ant3 |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> if ( k = m , .1. , .0. ) = .0. ) |
43 |
40 42
|
eqtrd |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( k I m ) = .0. ) |
44 |
43
|
oveq2d |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) = ( ( l X k ) ( .r ` R ) .0. ) ) |
45 |
1 10 4
|
ringrz |
|- ( ( R e. Ring /\ ( l X k ) e. B ) -> ( ( l X k ) ( .r ` R ) .0. ) = .0. ) |
46 |
22 28 45
|
syl2anc |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( ( l X k ) ( .r ` R ) .0. ) = .0. ) |
47 |
46
|
3adant3 |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( ( l X k ) ( .r ` R ) .0. ) = .0. ) |
48 |
44 47
|
eqtrd |
|- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) = .0. ) |
49 |
48 13
|
suppsssn |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) supp .0. ) C_ { m } ) |
50 |
1 4 21 13 18 36 49
|
gsumpt |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( R gsum ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ) = ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) ) |
51 |
|
oveq2 |
|- ( k = m -> ( l X k ) = ( l X m ) ) |
52 |
|
oveq1 |
|- ( k = m -> ( k I m ) = ( m I m ) ) |
53 |
51 52
|
oveq12d |
|- ( k = m -> ( ( l X k ) ( .r ` R ) ( k I m ) ) = ( ( l X m ) ( .r ` R ) ( m I m ) ) ) |
54 |
|
eqid |
|- ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) = ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) |
55 |
|
ovex |
|- ( ( l X m ) ( .r ` R ) ( m I m ) ) e. _V |
56 |
53 54 55
|
fvmpt |
|- ( m e. M -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) = ( ( l X m ) ( .r ` R ) ( m I m ) ) ) |
57 |
56
|
ad2antll |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) = ( ( l X m ) ( .r ` R ) ( m I m ) ) ) |
58 |
|
equequ1 |
|- ( i = m -> ( i = j <-> m = j ) ) |
59 |
58
|
ifbid |
|- ( i = m -> if ( i = j , .1. , .0. ) = if ( m = j , .1. , .0. ) ) |
60 |
|
equequ2 |
|- ( j = m -> ( m = j <-> m = m ) ) |
61 |
60
|
ifbid |
|- ( j = m -> if ( m = j , .1. , .0. ) = if ( m = m , .1. , .0. ) ) |
62 |
|
eqid |
|- m = m |
63 |
62
|
iftruei |
|- if ( m = m , .1. , .0. ) = .1. |
64 |
61 63
|
eqtrdi |
|- ( j = m -> if ( m = j , .1. , .0. ) = .1. ) |
65 |
3
|
fvexi |
|- .1. e. _V |
66 |
59 64 5 65
|
ovmpo |
|- ( ( m e. M /\ m e. M ) -> ( m I m ) = .1. ) |
67 |
66
|
anidms |
|- ( m e. M -> ( m I m ) = .1. ) |
68 |
67
|
oveq2d |
|- ( m e. M -> ( ( l X m ) ( .r ` R ) ( m I m ) ) = ( ( l X m ) ( .r ` R ) .1. ) ) |
69 |
68
|
ad2antll |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( l X m ) ( .r ` R ) ( m I m ) ) = ( ( l X m ) ( .r ` R ) .1. ) ) |
70 |
24
|
fovrnda |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( l X m ) e. B ) |
71 |
1 10 3
|
ringridm |
|- ( ( R e. Ring /\ ( l X m ) e. B ) -> ( ( l X m ) ( .r ` R ) .1. ) = ( l X m ) ) |
72 |
11 70 71
|
syl2anc |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( l X m ) ( .r ` R ) .1. ) = ( l X m ) ) |
73 |
57 69 72
|
3eqtrd |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) = ( l X m ) ) |
74 |
19 50 73
|
3eqtrd |
|- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( l ( X F I ) m ) = ( l X m ) ) |
75 |
74
|
ralrimivva |
|- ( ph -> A. l e. N A. m e. M ( l ( X F I ) m ) = ( l X m ) ) |
76 |
1 2 8 7 6 6 9 15
|
mamucl |
|- ( ph -> ( X F I ) e. ( B ^m ( N X. M ) ) ) |
77 |
|
elmapi |
|- ( ( X F I ) e. ( B ^m ( N X. M ) ) -> ( X F I ) : ( N X. M ) --> B ) |
78 |
76 77
|
syl |
|- ( ph -> ( X F I ) : ( N X. M ) --> B ) |
79 |
78
|
ffnd |
|- ( ph -> ( X F I ) Fn ( N X. M ) ) |
80 |
24
|
ffnd |
|- ( ph -> X Fn ( N X. M ) ) |
81 |
|
eqfnov2 |
|- ( ( ( X F I ) Fn ( N X. M ) /\ X Fn ( N X. M ) ) -> ( ( X F I ) = X <-> A. l e. N A. m e. M ( l ( X F I ) m ) = ( l X m ) ) ) |
82 |
79 80 81
|
syl2anc |
|- ( ph -> ( ( X F I ) = X <-> A. l e. N A. m e. M ( l ( X F I ) m ) = ( l X m ) ) ) |
83 |
75 82
|
mpbird |
|- ( ph -> ( X F I ) = X ) |