| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elmapi |  |-  ( f e. ( (/) ^m A ) -> f : A --> (/) ) | 
						
							| 2 |  | fdm |  |-  ( f : A --> (/) -> dom f = A ) | 
						
							| 3 |  | frn |  |-  ( f : A --> (/) -> ran f C_ (/) ) | 
						
							| 4 |  | ss0 |  |-  ( ran f C_ (/) -> ran f = (/) ) | 
						
							| 5 | 3 4 | syl |  |-  ( f : A --> (/) -> ran f = (/) ) | 
						
							| 6 |  | dm0rn0 |  |-  ( dom f = (/) <-> ran f = (/) ) | 
						
							| 7 | 5 6 | sylibr |  |-  ( f : A --> (/) -> dom f = (/) ) | 
						
							| 8 | 2 7 | eqtr3d |  |-  ( f : A --> (/) -> A = (/) ) | 
						
							| 9 | 1 8 | syl |  |-  ( f e. ( (/) ^m A ) -> A = (/) ) | 
						
							| 10 | 9 | necon3ai |  |-  ( A =/= (/) -> -. f e. ( (/) ^m A ) ) | 
						
							| 11 | 10 | eq0rdv |  |-  ( A =/= (/) -> ( (/) ^m A ) = (/) ) |