Step |
Hyp |
Ref |
Expression |
1 |
|
map0cor.1 |
|- ( ph -> A e. V ) |
2 |
|
map0cor.2 |
|- ( ph -> B e. W ) |
3 |
|
biid |
|- ( A =/= (/) <-> A =/= (/) ) |
4 |
3
|
necon2bbii |
|- ( A = (/) <-> -. A =/= (/) ) |
5 |
4
|
imbi2i |
|- ( ( B = (/) -> A = (/) ) <-> ( B = (/) -> -. A =/= (/) ) ) |
6 |
|
imnan |
|- ( ( B = (/) -> -. A =/= (/) ) <-> -. ( B = (/) /\ A =/= (/) ) ) |
7 |
5 6
|
bitri |
|- ( ( B = (/) -> A = (/) ) <-> -. ( B = (/) /\ A =/= (/) ) ) |
8 |
|
map0g |
|- ( ( B e. W /\ A e. V ) -> ( ( B ^m A ) = (/) <-> ( B = (/) /\ A =/= (/) ) ) ) |
9 |
8
|
notbid |
|- ( ( B e. W /\ A e. V ) -> ( -. ( B ^m A ) = (/) <-> -. ( B = (/) /\ A =/= (/) ) ) ) |
10 |
7 9
|
bitr4id |
|- ( ( B e. W /\ A e. V ) -> ( ( B = (/) -> A = (/) ) <-> -. ( B ^m A ) = (/) ) ) |
11 |
|
neq0 |
|- ( -. ( B ^m A ) = (/) <-> E. f f e. ( B ^m A ) ) |
12 |
11
|
a1i |
|- ( ( B e. W /\ A e. V ) -> ( -. ( B ^m A ) = (/) <-> E. f f e. ( B ^m A ) ) ) |
13 |
|
elmapg |
|- ( ( B e. W /\ A e. V ) -> ( f e. ( B ^m A ) <-> f : A --> B ) ) |
14 |
13
|
exbidv |
|- ( ( B e. W /\ A e. V ) -> ( E. f f e. ( B ^m A ) <-> E. f f : A --> B ) ) |
15 |
10 12 14
|
3bitrd |
|- ( ( B e. W /\ A e. V ) -> ( ( B = (/) -> A = (/) ) <-> E. f f : A --> B ) ) |
16 |
2 1 15
|
syl2anc |
|- ( ph -> ( ( B = (/) -> A = (/) ) <-> E. f f : A --> B ) ) |