| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|- ( A =/= (/) <-> E. f f e. A ) |
| 2 |
|
fconst6g |
|- ( f e. A -> ( B X. { f } ) : B --> A ) |
| 3 |
|
elmapg |
|- ( ( A e. V /\ B e. W ) -> ( ( B X. { f } ) e. ( A ^m B ) <-> ( B X. { f } ) : B --> A ) ) |
| 4 |
2 3
|
imbitrrid |
|- ( ( A e. V /\ B e. W ) -> ( f e. A -> ( B X. { f } ) e. ( A ^m B ) ) ) |
| 5 |
|
ne0i |
|- ( ( B X. { f } ) e. ( A ^m B ) -> ( A ^m B ) =/= (/) ) |
| 6 |
4 5
|
syl6 |
|- ( ( A e. V /\ B e. W ) -> ( f e. A -> ( A ^m B ) =/= (/) ) ) |
| 7 |
6
|
exlimdv |
|- ( ( A e. V /\ B e. W ) -> ( E. f f e. A -> ( A ^m B ) =/= (/) ) ) |
| 8 |
1 7
|
biimtrid |
|- ( ( A e. V /\ B e. W ) -> ( A =/= (/) -> ( A ^m B ) =/= (/) ) ) |
| 9 |
8
|
necon4d |
|- ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> A = (/) ) ) |
| 10 |
|
f0 |
|- (/) : (/) --> A |
| 11 |
|
feq2 |
|- ( B = (/) -> ( (/) : B --> A <-> (/) : (/) --> A ) ) |
| 12 |
10 11
|
mpbiri |
|- ( B = (/) -> (/) : B --> A ) |
| 13 |
|
elmapg |
|- ( ( A e. V /\ B e. W ) -> ( (/) e. ( A ^m B ) <-> (/) : B --> A ) ) |
| 14 |
12 13
|
imbitrrid |
|- ( ( A e. V /\ B e. W ) -> ( B = (/) -> (/) e. ( A ^m B ) ) ) |
| 15 |
|
ne0i |
|- ( (/) e. ( A ^m B ) -> ( A ^m B ) =/= (/) ) |
| 16 |
14 15
|
syl6 |
|- ( ( A e. V /\ B e. W ) -> ( B = (/) -> ( A ^m B ) =/= (/) ) ) |
| 17 |
16
|
necon2d |
|- ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> B =/= (/) ) ) |
| 18 |
9 17
|
jcad |
|- ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> ( A = (/) /\ B =/= (/) ) ) ) |
| 19 |
|
oveq1 |
|- ( A = (/) -> ( A ^m B ) = ( (/) ^m B ) ) |
| 20 |
|
map0b |
|- ( B =/= (/) -> ( (/) ^m B ) = (/) ) |
| 21 |
19 20
|
sylan9eq |
|- ( ( A = (/) /\ B =/= (/) ) -> ( A ^m B ) = (/) ) |
| 22 |
18 21
|
impbid1 |
|- ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) <-> ( A = (/) /\ B =/= (/) ) ) ) |