Metamath Proof Explorer


Theorem map0g

Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of Suppes p. 89. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion map0g
|- ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) <-> ( A = (/) /\ B =/= (/) ) ) )

Proof

Step Hyp Ref Expression
1 n0
 |-  ( A =/= (/) <-> E. f f e. A )
2 fconst6g
 |-  ( f e. A -> ( B X. { f } ) : B --> A )
3 elmapg
 |-  ( ( A e. V /\ B e. W ) -> ( ( B X. { f } ) e. ( A ^m B ) <-> ( B X. { f } ) : B --> A ) )
4 2 3 syl5ibr
 |-  ( ( A e. V /\ B e. W ) -> ( f e. A -> ( B X. { f } ) e. ( A ^m B ) ) )
5 ne0i
 |-  ( ( B X. { f } ) e. ( A ^m B ) -> ( A ^m B ) =/= (/) )
6 4 5 syl6
 |-  ( ( A e. V /\ B e. W ) -> ( f e. A -> ( A ^m B ) =/= (/) ) )
7 6 exlimdv
 |-  ( ( A e. V /\ B e. W ) -> ( E. f f e. A -> ( A ^m B ) =/= (/) ) )
8 1 7 syl5bi
 |-  ( ( A e. V /\ B e. W ) -> ( A =/= (/) -> ( A ^m B ) =/= (/) ) )
9 8 necon4d
 |-  ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> A = (/) ) )
10 f0
 |-  (/) : (/) --> A
11 feq2
 |-  ( B = (/) -> ( (/) : B --> A <-> (/) : (/) --> A ) )
12 10 11 mpbiri
 |-  ( B = (/) -> (/) : B --> A )
13 elmapg
 |-  ( ( A e. V /\ B e. W ) -> ( (/) e. ( A ^m B ) <-> (/) : B --> A ) )
14 12 13 syl5ibr
 |-  ( ( A e. V /\ B e. W ) -> ( B = (/) -> (/) e. ( A ^m B ) ) )
15 ne0i
 |-  ( (/) e. ( A ^m B ) -> ( A ^m B ) =/= (/) )
16 14 15 syl6
 |-  ( ( A e. V /\ B e. W ) -> ( B = (/) -> ( A ^m B ) =/= (/) ) )
17 16 necon2d
 |-  ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> B =/= (/) ) )
18 9 17 jcad
 |-  ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> ( A = (/) /\ B =/= (/) ) ) )
19 oveq1
 |-  ( A = (/) -> ( A ^m B ) = ( (/) ^m B ) )
20 map0b
 |-  ( B =/= (/) -> ( (/) ^m B ) = (/) )
21 19 20 sylan9eq
 |-  ( ( A = (/) /\ B =/= (/) ) -> ( A ^m B ) = (/) )
22 18 21 impbid1
 |-  ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) <-> ( A = (/) /\ B =/= (/) ) ) )