| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 |  |-  ( A =/= (/) <-> E. f f e. A ) | 
						
							| 2 |  | fconst6g |  |-  ( f e. A -> ( B X. { f } ) : B --> A ) | 
						
							| 3 |  | elmapg |  |-  ( ( A e. V /\ B e. W ) -> ( ( B X. { f } ) e. ( A ^m B ) <-> ( B X. { f } ) : B --> A ) ) | 
						
							| 4 | 2 3 | imbitrrid |  |-  ( ( A e. V /\ B e. W ) -> ( f e. A -> ( B X. { f } ) e. ( A ^m B ) ) ) | 
						
							| 5 |  | ne0i |  |-  ( ( B X. { f } ) e. ( A ^m B ) -> ( A ^m B ) =/= (/) ) | 
						
							| 6 | 4 5 | syl6 |  |-  ( ( A e. V /\ B e. W ) -> ( f e. A -> ( A ^m B ) =/= (/) ) ) | 
						
							| 7 | 6 | exlimdv |  |-  ( ( A e. V /\ B e. W ) -> ( E. f f e. A -> ( A ^m B ) =/= (/) ) ) | 
						
							| 8 | 1 7 | biimtrid |  |-  ( ( A e. V /\ B e. W ) -> ( A =/= (/) -> ( A ^m B ) =/= (/) ) ) | 
						
							| 9 | 8 | necon4d |  |-  ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> A = (/) ) ) | 
						
							| 10 |  | f0 |  |-  (/) : (/) --> A | 
						
							| 11 |  | feq2 |  |-  ( B = (/) -> ( (/) : B --> A <-> (/) : (/) --> A ) ) | 
						
							| 12 | 10 11 | mpbiri |  |-  ( B = (/) -> (/) : B --> A ) | 
						
							| 13 |  | elmapg |  |-  ( ( A e. V /\ B e. W ) -> ( (/) e. ( A ^m B ) <-> (/) : B --> A ) ) | 
						
							| 14 | 12 13 | imbitrrid |  |-  ( ( A e. V /\ B e. W ) -> ( B = (/) -> (/) e. ( A ^m B ) ) ) | 
						
							| 15 |  | ne0i |  |-  ( (/) e. ( A ^m B ) -> ( A ^m B ) =/= (/) ) | 
						
							| 16 | 14 15 | syl6 |  |-  ( ( A e. V /\ B e. W ) -> ( B = (/) -> ( A ^m B ) =/= (/) ) ) | 
						
							| 17 | 16 | necon2d |  |-  ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> B =/= (/) ) ) | 
						
							| 18 | 9 17 | jcad |  |-  ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> ( A = (/) /\ B =/= (/) ) ) ) | 
						
							| 19 |  | oveq1 |  |-  ( A = (/) -> ( A ^m B ) = ( (/) ^m B ) ) | 
						
							| 20 |  | map0b |  |-  ( B =/= (/) -> ( (/) ^m B ) = (/) ) | 
						
							| 21 | 19 20 | sylan9eq |  |-  ( ( A = (/) /\ B =/= (/) ) -> ( A ^m B ) = (/) ) | 
						
							| 22 | 18 21 | impbid1 |  |-  ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) <-> ( A = (/) /\ B =/= (/) ) ) ) |