Step |
Hyp |
Ref |
Expression |
1 |
|
map2psrpr.2 |
|- C e. R. |
2 |
|
ltrelsr |
|- |
3 |
2
|
brel |
|- ( ( C +R -1R ) ( ( C +R -1R ) e. R. /\ A e. R. ) ) |
4 |
3
|
simprd |
|- ( ( C +R -1R ) A e. R. ) |
5 |
|
ltasr |
|- ( C e. R. -> ( -1R ( C +R -1R ) |
6 |
1 5
|
ax-mp |
|- ( -1R ( C +R -1R ) |
7 |
|
pn0sr |
|- ( C e. R. -> ( C +R ( C .R -1R ) ) = 0R ) |
8 |
1 7
|
ax-mp |
|- ( C +R ( C .R -1R ) ) = 0R |
9 |
8
|
oveq1i |
|- ( ( C +R ( C .R -1R ) ) +R A ) = ( 0R +R A ) |
10 |
|
addasssr |
|- ( ( C +R ( C .R -1R ) ) +R A ) = ( C +R ( ( C .R -1R ) +R A ) ) |
11 |
|
addcomsr |
|- ( 0R +R A ) = ( A +R 0R ) |
12 |
9 10 11
|
3eqtr3i |
|- ( C +R ( ( C .R -1R ) +R A ) ) = ( A +R 0R ) |
13 |
|
0idsr |
|- ( A e. R. -> ( A +R 0R ) = A ) |
14 |
12 13
|
eqtrid |
|- ( A e. R. -> ( C +R ( ( C .R -1R ) +R A ) ) = A ) |
15 |
14
|
breq2d |
|- ( A e. R. -> ( ( C +R -1R ) ( C +R -1R ) |
16 |
6 15
|
syl5bb |
|- ( A e. R. -> ( -1R ( C +R -1R ) |
17 |
|
m1r |
|- -1R e. R. |
18 |
|
mulclsr |
|- ( ( C e. R. /\ -1R e. R. ) -> ( C .R -1R ) e. R. ) |
19 |
1 17 18
|
mp2an |
|- ( C .R -1R ) e. R. |
20 |
|
addclsr |
|- ( ( ( C .R -1R ) e. R. /\ A e. R. ) -> ( ( C .R -1R ) +R A ) e. R. ) |
21 |
19 20
|
mpan |
|- ( A e. R. -> ( ( C .R -1R ) +R A ) e. R. ) |
22 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
23 |
|
breq2 |
|- ( [ <. y , z >. ] ~R = ( ( C .R -1R ) +R A ) -> ( -1R . ] ~R <-> -1R |
24 |
|
eqeq2 |
|- ( [ <. y , z >. ] ~R = ( ( C .R -1R ) +R A ) -> ( [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) ) ) |
25 |
24
|
rexbidv |
|- ( [ <. y , z >. ] ~R = ( ( C .R -1R ) +R A ) -> ( E. x e. P. [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> E. x e. P. [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) ) ) |
26 |
23 25
|
imbi12d |
|- ( [ <. y , z >. ] ~R = ( ( C .R -1R ) +R A ) -> ( ( -1R . ] ~R -> E. x e. P. [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R ) <-> ( -1R E. x e. P. [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) ) ) ) |
27 |
|
df-m1r |
|- -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
28 |
27
|
breq1i |
|- ( -1R . ] ~R <-> [ <. 1P , ( 1P +P. 1P ) >. ] ~R . ] ~R ) |
29 |
|
addasspr |
|- ( ( 1P +P. 1P ) +P. y ) = ( 1P +P. ( 1P +P. y ) ) |
30 |
29
|
breq2i |
|- ( ( 1P +P. z ) ( 1P +P. z ) |
31 |
|
ltsrpr |
|- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R . ] ~R <-> ( 1P +P. z ) |
32 |
|
1pr |
|- 1P e. P. |
33 |
|
ltapr |
|- ( 1P e. P. -> ( z ( 1P +P. z ) |
34 |
32 33
|
ax-mp |
|- ( z ( 1P +P. z ) |
35 |
30 31 34
|
3bitr4i |
|- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R . ] ~R <-> z |
36 |
28 35
|
bitri |
|- ( -1R . ] ~R <-> z |
37 |
|
ltexpri |
|- ( z E. x e. P. ( z +P. x ) = ( 1P +P. y ) ) |
38 |
36 37
|
sylbi |
|- ( -1R . ] ~R -> E. x e. P. ( z +P. x ) = ( 1P +P. y ) ) |
39 |
|
enreceq |
|- ( ( ( x e. P. /\ 1P e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> ( x +P. z ) = ( 1P +P. y ) ) ) |
40 |
32 39
|
mpanl2 |
|- ( ( x e. P. /\ ( y e. P. /\ z e. P. ) ) -> ( [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> ( x +P. z ) = ( 1P +P. y ) ) ) |
41 |
|
addcompr |
|- ( z +P. x ) = ( x +P. z ) |
42 |
41
|
eqeq1i |
|- ( ( z +P. x ) = ( 1P +P. y ) <-> ( x +P. z ) = ( 1P +P. y ) ) |
43 |
40 42
|
bitr4di |
|- ( ( x e. P. /\ ( y e. P. /\ z e. P. ) ) -> ( [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> ( z +P. x ) = ( 1P +P. y ) ) ) |
44 |
43
|
ancoms |
|- ( ( ( y e. P. /\ z e. P. ) /\ x e. P. ) -> ( [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> ( z +P. x ) = ( 1P +P. y ) ) ) |
45 |
44
|
rexbidva |
|- ( ( y e. P. /\ z e. P. ) -> ( E. x e. P. [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R <-> E. x e. P. ( z +P. x ) = ( 1P +P. y ) ) ) |
46 |
38 45
|
syl5ibr |
|- ( ( y e. P. /\ z e. P. ) -> ( -1R . ] ~R -> E. x e. P. [ <. x , 1P >. ] ~R = [ <. y , z >. ] ~R ) ) |
47 |
22 26 46
|
ecoptocl |
|- ( ( ( C .R -1R ) +R A ) e. R. -> ( -1R E. x e. P. [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) ) ) |
48 |
21 47
|
syl |
|- ( A e. R. -> ( -1R E. x e. P. [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) ) ) |
49 |
|
oveq2 |
|- ( [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) -> ( C +R [ <. x , 1P >. ] ~R ) = ( C +R ( ( C .R -1R ) +R A ) ) ) |
50 |
49 14
|
sylan9eqr |
|- ( ( A e. R. /\ [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) ) -> ( C +R [ <. x , 1P >. ] ~R ) = A ) |
51 |
50
|
ex |
|- ( A e. R. -> ( [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) -> ( C +R [ <. x , 1P >. ] ~R ) = A ) ) |
52 |
51
|
reximdv |
|- ( A e. R. -> ( E. x e. P. [ <. x , 1P >. ] ~R = ( ( C .R -1R ) +R A ) -> E. x e. P. ( C +R [ <. x , 1P >. ] ~R ) = A ) ) |
53 |
48 52
|
syld |
|- ( A e. R. -> ( -1R E. x e. P. ( C +R [ <. x , 1P >. ] ~R ) = A ) ) |
54 |
16 53
|
sylbird |
|- ( A e. R. -> ( ( C +R -1R ) E. x e. P. ( C +R [ <. x , 1P >. ] ~R ) = A ) ) |
55 |
4 54
|
mpcom |
|- ( ( C +R -1R ) E. x e. P. ( C +R [ <. x , 1P >. ] ~R ) = A ) |
56 |
1
|
mappsrpr |
|- ( ( C +R -1R ) . ] ~R ) <-> x e. P. ) |
57 |
|
breq2 |
|- ( ( C +R [ <. x , 1P >. ] ~R ) = A -> ( ( C +R -1R ) . ] ~R ) <-> ( C +R -1R ) |
58 |
56 57
|
bitr3id |
|- ( ( C +R [ <. x , 1P >. ] ~R ) = A -> ( x e. P. <-> ( C +R -1R ) |
59 |
58
|
biimpac |
|- ( ( x e. P. /\ ( C +R [ <. x , 1P >. ] ~R ) = A ) -> ( C +R -1R ) |
60 |
59
|
rexlimiva |
|- ( E. x e. P. ( C +R [ <. x , 1P >. ] ~R ) = A -> ( C +R -1R ) |
61 |
55 60
|
impbii |
|- ( ( C +R -1R ) E. x e. P. ( C +R [ <. x , 1P >. ] ~R ) = A ) |