| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 2 |  | df-pr |  |-  { (/) , 1o } = ( { (/) } u. { 1o } ) | 
						
							| 3 | 1 2 | eqtri |  |-  2o = ( { (/) } u. { 1o } ) | 
						
							| 4 | 3 | oveq2i |  |-  ( A ^m 2o ) = ( A ^m ( { (/) } u. { 1o } ) ) | 
						
							| 5 |  | snex |  |-  { (/) } e. _V | 
						
							| 6 | 5 | a1i |  |-  ( A e. V -> { (/) } e. _V ) | 
						
							| 7 |  | snex |  |-  { 1o } e. _V | 
						
							| 8 | 7 | a1i |  |-  ( A e. V -> { 1o } e. _V ) | 
						
							| 9 |  | id |  |-  ( A e. V -> A e. V ) | 
						
							| 10 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 11 | 10 | neii |  |-  -. 1o = (/) | 
						
							| 12 |  | elsni |  |-  ( 1o e. { (/) } -> 1o = (/) ) | 
						
							| 13 | 11 12 | mto |  |-  -. 1o e. { (/) } | 
						
							| 14 |  | disjsn |  |-  ( ( { (/) } i^i { 1o } ) = (/) <-> -. 1o e. { (/) } ) | 
						
							| 15 | 13 14 | mpbir |  |-  ( { (/) } i^i { 1o } ) = (/) | 
						
							| 16 | 15 | a1i |  |-  ( A e. V -> ( { (/) } i^i { 1o } ) = (/) ) | 
						
							| 17 |  | mapunen |  |-  ( ( ( { (/) } e. _V /\ { 1o } e. _V /\ A e. V ) /\ ( { (/) } i^i { 1o } ) = (/) ) -> ( A ^m ( { (/) } u. { 1o } ) ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ) | 
						
							| 18 | 6 8 9 16 17 | syl31anc |  |-  ( A e. V -> ( A ^m ( { (/) } u. { 1o } ) ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ) | 
						
							| 19 | 4 18 | eqbrtrid |  |-  ( A e. V -> ( A ^m 2o ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ) | 
						
							| 20 |  | 0ex |  |-  (/) e. _V | 
						
							| 21 | 20 | a1i |  |-  ( A e. V -> (/) e. _V ) | 
						
							| 22 | 9 21 | mapsnend |  |-  ( A e. V -> ( A ^m { (/) } ) ~~ A ) | 
						
							| 23 |  | 1oex |  |-  1o e. _V | 
						
							| 24 | 23 | a1i |  |-  ( A e. V -> 1o e. _V ) | 
						
							| 25 | 9 24 | mapsnend |  |-  ( A e. V -> ( A ^m { 1o } ) ~~ A ) | 
						
							| 26 |  | xpen |  |-  ( ( ( A ^m { (/) } ) ~~ A /\ ( A ^m { 1o } ) ~~ A ) -> ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ~~ ( A X. A ) ) | 
						
							| 27 | 22 25 26 | syl2anc |  |-  ( A e. V -> ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ~~ ( A X. A ) ) | 
						
							| 28 |  | entr |  |-  ( ( ( A ^m 2o ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) /\ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ~~ ( A X. A ) ) -> ( A ^m 2o ) ~~ ( A X. A ) ) | 
						
							| 29 | 19 27 28 | syl2anc |  |-  ( A e. V -> ( A ^m 2o ) ~~ ( A X. A ) ) |