Description: Part (7) of Baer p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapdh75.h | |- H = ( LHyp ` K ) |
|
| mapdh75.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| mapdh75.v | |- V = ( Base ` U ) |
||
| mapdh75.s | |- .- = ( -g ` U ) |
||
| mapdh75.o | |- .0. = ( 0g ` U ) |
||
| mapdh75.n | |- N = ( LSpan ` U ) |
||
| mapdh75.c | |- C = ( ( LCDual ` K ) ` W ) |
||
| mapdh75.d | |- D = ( Base ` C ) |
||
| mapdh75.r | |- R = ( -g ` C ) |
||
| mapdh75.q | |- Q = ( 0g ` C ) |
||
| mapdh75.j | |- J = ( LSpan ` C ) |
||
| mapdh75.m | |- M = ( ( mapd ` K ) ` W ) |
||
| mapdh75.i | |- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
||
| mapdh75.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| mapdh75.f | |- ( ph -> F e. D ) |
||
| mapdh75.mn | |- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
||
| mapdh75a | |- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
||
| mapdh75c.ne | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
| mapdh75c.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
| mapdh75c.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
||
| Assertion | mapdh75cN | |- ( ph -> ( I ` <. Y , G , X >. ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh75.h | |- H = ( LHyp ` K ) |
|
| 2 | mapdh75.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 3 | mapdh75.v | |- V = ( Base ` U ) |
|
| 4 | mapdh75.s | |- .- = ( -g ` U ) |
|
| 5 | mapdh75.o | |- .0. = ( 0g ` U ) |
|
| 6 | mapdh75.n | |- N = ( LSpan ` U ) |
|
| 7 | mapdh75.c | |- C = ( ( LCDual ` K ) ` W ) |
|
| 8 | mapdh75.d | |- D = ( Base ` C ) |
|
| 9 | mapdh75.r | |- R = ( -g ` C ) |
|
| 10 | mapdh75.q | |- Q = ( 0g ` C ) |
|
| 11 | mapdh75.j | |- J = ( LSpan ` C ) |
|
| 12 | mapdh75.m | |- M = ( ( mapd ` K ) ` W ) |
|
| 13 | mapdh75.i | |- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
|
| 14 | mapdh75.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 15 | mapdh75.f | |- ( ph -> F e. D ) |
|
| 16 | mapdh75.mn | |- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
|
| 17 | mapdh75a | |- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
|
| 18 | mapdh75c.ne | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
| 19 | mapdh75c.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
| 20 | mapdh75c.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
|
| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | mapdh75e | |- ( ph -> ( I ` <. Y , G , X >. ) = F ) |