| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh7.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdh7.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
mapdh7.v |
|- V = ( Base ` U ) |
| 4 |
|
mapdh7.s |
|- .- = ( -g ` U ) |
| 5 |
|
mapdh7.o |
|- .0. = ( 0g ` U ) |
| 6 |
|
mapdh7.n |
|- N = ( LSpan ` U ) |
| 7 |
|
mapdh7.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 8 |
|
mapdh7.d |
|- D = ( Base ` C ) |
| 9 |
|
mapdh7.r |
|- R = ( -g ` C ) |
| 10 |
|
mapdh7.q |
|- Q = ( 0g ` C ) |
| 11 |
|
mapdh7.j |
|- J = ( LSpan ` C ) |
| 12 |
|
mapdh7.m |
|- M = ( ( mapd ` K ) ` W ) |
| 13 |
|
mapdh7.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
| 14 |
|
mapdh7.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 15 |
|
mapdh7.f |
|- ( ph -> F e. D ) |
| 16 |
|
mapdh7.mn |
|- ( ph -> ( M ` ( N ` { u } ) ) = ( J ` { F } ) ) |
| 17 |
|
mapdh7.x |
|- ( ph -> u e. ( V \ { .0. } ) ) |
| 18 |
|
mapdh7.y |
|- ( ph -> v e. ( V \ { .0. } ) ) |
| 19 |
|
mapdh7.z |
|- ( ph -> w e. ( V \ { .0. } ) ) |
| 20 |
|
mapdh7.ne |
|- ( ph -> ( N ` { u } ) =/= ( N ` { v } ) ) |
| 21 |
|
mapdh7.wn |
|- ( ph -> -. w e. ( N ` { u , v } ) ) |
| 22 |
|
mapdh7b |
|- ( ph -> ( I ` <. u , F , w >. ) = E ) |
| 23 |
19
|
eldifad |
|- ( ph -> w e. V ) |
| 24 |
1 2 14
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 25 |
17
|
eldifad |
|- ( ph -> u e. V ) |
| 26 |
18
|
eldifad |
|- ( ph -> v e. V ) |
| 27 |
3 6 24 23 25 26 21
|
lspindpi |
|- ( ph -> ( ( N ` { w } ) =/= ( N ` { u } ) /\ ( N ` { w } ) =/= ( N ` { v } ) ) ) |
| 28 |
27
|
simpld |
|- ( ph -> ( N ` { w } ) =/= ( N ` { u } ) ) |
| 29 |
28
|
necomd |
|- ( ph -> ( N ` { u } ) =/= ( N ` { w } ) ) |
| 30 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 23 29
|
mapdhcl |
|- ( ph -> ( I ` <. u , F , w >. ) e. D ) |
| 31 |
22 30
|
eqeltrrd |
|- ( ph -> E e. D ) |
| 32 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 17 19 31 29
|
mapdheq2 |
|- ( ph -> ( ( I ` <. u , F , w >. ) = E -> ( I ` <. w , E , u >. ) = F ) ) |
| 33 |
22 32
|
mpd |
|- ( ph -> ( I ` <. w , E , u >. ) = F ) |