Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020) (Proof shortened by Thierry Arnoux, 3-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapdm0 | |- ( B e. V -> ( B ^m (/) ) = { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | elmapg | |- ( ( B e. V /\ (/) e. _V ) -> ( f e. ( B ^m (/) ) <-> f : (/) --> B ) ) |
|
| 3 | 1 2 | mpan2 | |- ( B e. V -> ( f e. ( B ^m (/) ) <-> f : (/) --> B ) ) |
| 4 | f0bi | |- ( f : (/) --> B <-> f = (/) ) |
|
| 5 | 3 4 | bitrdi | |- ( B e. V -> ( f e. ( B ^m (/) ) <-> f = (/) ) ) |
| 6 | velsn | |- ( f e. { (/) } <-> f = (/) ) |
|
| 7 | 5 6 | bitr4di | |- ( B e. V -> ( f e. ( B ^m (/) ) <-> f e. { (/) } ) ) |
| 8 | 7 | eqrdv | |- ( B e. V -> ( B ^m (/) ) = { (/) } ) |