Step |
Hyp |
Ref |
Expression |
1 |
|
reldom |
|- Rel ~<_ |
2 |
1
|
brrelex2i |
|- ( A ~<_ B -> B e. _V ) |
3 |
|
domeng |
|- ( B e. _V -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) ) |
4 |
2 3
|
syl |
|- ( A ~<_ B -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) ) |
5 |
4
|
ibi |
|- ( A ~<_ B -> E. x ( A ~~ x /\ x C_ B ) ) |
6 |
5
|
adantr |
|- ( ( A ~<_ B /\ C e. _V ) -> E. x ( A ~~ x /\ x C_ B ) ) |
7 |
|
simpl |
|- ( ( A ~~ x /\ x C_ B ) -> A ~~ x ) |
8 |
|
enrefg |
|- ( C e. _V -> C ~~ C ) |
9 |
8
|
adantl |
|- ( ( A ~<_ B /\ C e. _V ) -> C ~~ C ) |
10 |
|
mapen |
|- ( ( A ~~ x /\ C ~~ C ) -> ( A ^m C ) ~~ ( x ^m C ) ) |
11 |
7 9 10
|
syl2anr |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> ( A ^m C ) ~~ ( x ^m C ) ) |
12 |
|
ovex |
|- ( B ^m C ) e. _V |
13 |
2
|
ad2antrr |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> B e. _V ) |
14 |
|
simprr |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> x C_ B ) |
15 |
|
mapss |
|- ( ( B e. _V /\ x C_ B ) -> ( x ^m C ) C_ ( B ^m C ) ) |
16 |
13 14 15
|
syl2anc |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> ( x ^m C ) C_ ( B ^m C ) ) |
17 |
|
ssdomg |
|- ( ( B ^m C ) e. _V -> ( ( x ^m C ) C_ ( B ^m C ) -> ( x ^m C ) ~<_ ( B ^m C ) ) ) |
18 |
12 16 17
|
mpsyl |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> ( x ^m C ) ~<_ ( B ^m C ) ) |
19 |
|
endomtr |
|- ( ( ( A ^m C ) ~~ ( x ^m C ) /\ ( x ^m C ) ~<_ ( B ^m C ) ) -> ( A ^m C ) ~<_ ( B ^m C ) ) |
20 |
11 18 19
|
syl2anc |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( A ~~ x /\ x C_ B ) ) -> ( A ^m C ) ~<_ ( B ^m C ) ) |
21 |
6 20
|
exlimddv |
|- ( ( A ~<_ B /\ C e. _V ) -> ( A ^m C ) ~<_ ( B ^m C ) ) |
22 |
|
elmapex |
|- ( x e. ( A ^m C ) -> ( A e. _V /\ C e. _V ) ) |
23 |
22
|
simprd |
|- ( x e. ( A ^m C ) -> C e. _V ) |
24 |
23
|
con3i |
|- ( -. C e. _V -> -. x e. ( A ^m C ) ) |
25 |
24
|
eq0rdv |
|- ( -. C e. _V -> ( A ^m C ) = (/) ) |
26 |
25
|
adantl |
|- ( ( A ~<_ B /\ -. C e. _V ) -> ( A ^m C ) = (/) ) |
27 |
12
|
0dom |
|- (/) ~<_ ( B ^m C ) |
28 |
26 27
|
eqbrtrdi |
|- ( ( A ~<_ B /\ -. C e. _V ) -> ( A ^m C ) ~<_ ( B ^m C ) ) |
29 |
21 28
|
pm2.61dan |
|- ( A ~<_ B -> ( A ^m C ) ~<_ ( B ^m C ) ) |