Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> C = (/) ) |
2 |
1
|
oveq1d |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( C ^m A ) = ( (/) ^m A ) ) |
3 |
|
simplr |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> -. ( A = (/) /\ C = (/) ) ) |
4 |
|
idd |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( A = (/) -> A = (/) ) ) |
5 |
4 1
|
jctird |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( A = (/) -> ( A = (/) /\ C = (/) ) ) ) |
6 |
3 5
|
mtod |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> -. A = (/) ) |
7 |
6
|
neqned |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> A =/= (/) ) |
8 |
|
map0b |
|- ( A =/= (/) -> ( (/) ^m A ) = (/) ) |
9 |
7 8
|
syl |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( (/) ^m A ) = (/) ) |
10 |
2 9
|
eqtrd |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( C ^m A ) = (/) ) |
11 |
|
ovex |
|- ( C ^m B ) e. _V |
12 |
11
|
0dom |
|- (/) ~<_ ( C ^m B ) |
13 |
10 12
|
eqbrtrdi |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C = (/) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
14 |
|
simpll |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> A ~<_ B ) |
15 |
|
reldom |
|- Rel ~<_ |
16 |
15
|
brrelex2i |
|- ( A ~<_ B -> B e. _V ) |
17 |
16
|
ad2antrr |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> B e. _V ) |
18 |
|
domeng |
|- ( B e. _V -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) ) |
19 |
17 18
|
syl |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) ) |
20 |
14 19
|
mpbid |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> E. x ( A ~~ x /\ x C_ B ) ) |
21 |
|
enrefg |
|- ( C e. _V -> C ~~ C ) |
22 |
21
|
ad2antlr |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> C ~~ C ) |
23 |
|
simprrl |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> A ~~ x ) |
24 |
|
mapen |
|- ( ( C ~~ C /\ A ~~ x ) -> ( C ^m A ) ~~ ( C ^m x ) ) |
25 |
22 23 24
|
syl2anc |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m A ) ~~ ( C ^m x ) ) |
26 |
|
ovexd |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m x ) e. _V ) |
27 |
|
ovexd |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m ( B \ x ) ) e. _V ) |
28 |
|
simprl |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> C =/= (/) ) |
29 |
|
simplr |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> C e. _V ) |
30 |
16
|
ad2antrr |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> B e. _V ) |
31 |
30
|
difexd |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( B \ x ) e. _V ) |
32 |
|
map0g |
|- ( ( C e. _V /\ ( B \ x ) e. _V ) -> ( ( C ^m ( B \ x ) ) = (/) <-> ( C = (/) /\ ( B \ x ) =/= (/) ) ) ) |
33 |
|
simpl |
|- ( ( C = (/) /\ ( B \ x ) =/= (/) ) -> C = (/) ) |
34 |
32 33
|
syl6bi |
|- ( ( C e. _V /\ ( B \ x ) e. _V ) -> ( ( C ^m ( B \ x ) ) = (/) -> C = (/) ) ) |
35 |
34
|
necon3d |
|- ( ( C e. _V /\ ( B \ x ) e. _V ) -> ( C =/= (/) -> ( C ^m ( B \ x ) ) =/= (/) ) ) |
36 |
29 31 35
|
syl2anc |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C =/= (/) -> ( C ^m ( B \ x ) ) =/= (/) ) ) |
37 |
28 36
|
mpd |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m ( B \ x ) ) =/= (/) ) |
38 |
|
xpdom3 |
|- ( ( ( C ^m x ) e. _V /\ ( C ^m ( B \ x ) ) e. _V /\ ( C ^m ( B \ x ) ) =/= (/) ) -> ( C ^m x ) ~<_ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ) |
39 |
26 27 37 38
|
syl3anc |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m x ) ~<_ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ) |
40 |
|
vex |
|- x e. _V |
41 |
40
|
a1i |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> x e. _V ) |
42 |
|
disjdif |
|- ( x i^i ( B \ x ) ) = (/) |
43 |
42
|
a1i |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( x i^i ( B \ x ) ) = (/) ) |
44 |
|
mapunen |
|- ( ( ( x e. _V /\ ( B \ x ) e. _V /\ C e. _V ) /\ ( x i^i ( B \ x ) ) = (/) ) -> ( C ^m ( x u. ( B \ x ) ) ) ~~ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ) |
45 |
41 31 29 43 44
|
syl31anc |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m ( x u. ( B \ x ) ) ) ~~ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ) |
46 |
45
|
ensymd |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ~~ ( C ^m ( x u. ( B \ x ) ) ) ) |
47 |
|
simprrr |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> x C_ B ) |
48 |
|
undif |
|- ( x C_ B <-> ( x u. ( B \ x ) ) = B ) |
49 |
47 48
|
sylib |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( x u. ( B \ x ) ) = B ) |
50 |
49
|
oveq2d |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m ( x u. ( B \ x ) ) ) = ( C ^m B ) ) |
51 |
46 50
|
breqtrd |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ~~ ( C ^m B ) ) |
52 |
|
domentr |
|- ( ( ( C ^m x ) ~<_ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) /\ ( ( C ^m x ) X. ( C ^m ( B \ x ) ) ) ~~ ( C ^m B ) ) -> ( C ^m x ) ~<_ ( C ^m B ) ) |
53 |
39 51 52
|
syl2anc |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m x ) ~<_ ( C ^m B ) ) |
54 |
|
endomtr |
|- ( ( ( C ^m A ) ~~ ( C ^m x ) /\ ( C ^m x ) ~<_ ( C ^m B ) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
55 |
25 53 54
|
syl2anc |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ ( C =/= (/) /\ ( A ~~ x /\ x C_ B ) ) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
56 |
55
|
expr |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> ( ( A ~~ x /\ x C_ B ) -> ( C ^m A ) ~<_ ( C ^m B ) ) ) |
57 |
56
|
exlimdv |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> ( E. x ( A ~~ x /\ x C_ B ) -> ( C ^m A ) ~<_ ( C ^m B ) ) ) |
58 |
20 57
|
mpd |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ C =/= (/) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
59 |
58
|
adantlr |
|- ( ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) /\ C =/= (/) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
60 |
13 59
|
pm2.61dane |
|- ( ( ( A ~<_ B /\ C e. _V ) /\ -. ( A = (/) /\ C = (/) ) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
61 |
60
|
an32s |
|- ( ( ( A ~<_ B /\ -. ( A = (/) /\ C = (/) ) ) /\ C e. _V ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |
62 |
61
|
ex |
|- ( ( A ~<_ B /\ -. ( A = (/) /\ C = (/) ) ) -> ( C e. _V -> ( C ^m A ) ~<_ ( C ^m B ) ) ) |
63 |
|
reldmmap |
|- Rel dom ^m |
64 |
63
|
ovprc1 |
|- ( -. C e. _V -> ( C ^m A ) = (/) ) |
65 |
64 12
|
eqbrtrdi |
|- ( -. C e. _V -> ( C ^m A ) ~<_ ( C ^m B ) ) |
66 |
62 65
|
pm2.61d1 |
|- ( ( A ~<_ B /\ -. ( A = (/) /\ C = (/) ) ) -> ( C ^m A ) ~<_ ( C ^m B ) ) |