Metamath Proof Explorer


Theorem mapex

Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of Kunen p. 31. (Contributed by Raph Levien, 4-Dec-2003)

Ref Expression
Assertion mapex
|- ( ( A e. C /\ B e. D ) -> { f | f : A --> B } e. _V )

Proof

Step Hyp Ref Expression
1 fssxp
 |-  ( f : A --> B -> f C_ ( A X. B ) )
2 1 ss2abi
 |-  { f | f : A --> B } C_ { f | f C_ ( A X. B ) }
3 df-pw
 |-  ~P ( A X. B ) = { f | f C_ ( A X. B ) }
4 2 3 sseqtrri
 |-  { f | f : A --> B } C_ ~P ( A X. B )
5 xpexg
 |-  ( ( A e. C /\ B e. D ) -> ( A X. B ) e. _V )
6 5 pwexd
 |-  ( ( A e. C /\ B e. D ) -> ~P ( A X. B ) e. _V )
7 ssexg
 |-  ( ( { f | f : A --> B } C_ ~P ( A X. B ) /\ ~P ( A X. B ) e. _V ) -> { f | f : A --> B } e. _V )
8 4 6 7 sylancr
 |-  ( ( A e. C /\ B e. D ) -> { f | f : A --> B } e. _V )