| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fssxp |  |-  ( f : A --> B -> f C_ ( A X. B ) ) | 
						
							| 2 | 1 | ss2abi |  |-  { f | f : A --> B } C_ { f | f C_ ( A X. B ) } | 
						
							| 3 |  | df-pw |  |-  ~P ( A X. B ) = { f | f C_ ( A X. B ) } | 
						
							| 4 | 2 3 | sseqtrri |  |-  { f | f : A --> B } C_ ~P ( A X. B ) | 
						
							| 5 |  | xpexg |  |-  ( ( A e. C /\ B e. D ) -> ( A X. B ) e. _V ) | 
						
							| 6 | 5 | pwexd |  |-  ( ( A e. C /\ B e. D ) -> ~P ( A X. B ) e. _V ) | 
						
							| 7 |  | ssexg |  |-  ( ( { f | f : A --> B } C_ ~P ( A X. B ) /\ ~P ( A X. B ) e. _V ) -> { f | f : A --> B } e. _V ) | 
						
							| 8 | 4 6 7 | sylancr |  |-  ( ( A e. C /\ B e. D ) -> { f | f : A --> B } e. _V ) |