Metamath Proof Explorer


Theorem mapfi

Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Assertion mapfi
|- ( ( A e. Fin /\ B e. Fin ) -> ( A ^m B ) e. Fin )

Proof

Step Hyp Ref Expression
1 xpfi
 |-  ( ( B e. Fin /\ A e. Fin ) -> ( B X. A ) e. Fin )
2 1 ancoms
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( B X. A ) e. Fin )
3 pwfi
 |-  ( ( B X. A ) e. Fin <-> ~P ( B X. A ) e. Fin )
4 2 3 sylib
 |-  ( ( A e. Fin /\ B e. Fin ) -> ~P ( B X. A ) e. Fin )
5 mapsspw
 |-  ( A ^m B ) C_ ~P ( B X. A )
6 ssfi
 |-  ( ( ~P ( B X. A ) e. Fin /\ ( A ^m B ) C_ ~P ( B X. A ) ) -> ( A ^m B ) e. Fin )
7 4 5 6 sylancl
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( A ^m B ) e. Fin )