Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | mapfi | |- ( ( A e. Fin /\ B e. Fin ) -> ( A ^m B ) e. Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpfi | |- ( ( B e. Fin /\ A e. Fin ) -> ( B X. A ) e. Fin ) |
|
2 | 1 | ancoms | |- ( ( A e. Fin /\ B e. Fin ) -> ( B X. A ) e. Fin ) |
3 | pwfi | |- ( ( B X. A ) e. Fin <-> ~P ( B X. A ) e. Fin ) |
|
4 | 2 3 | sylib | |- ( ( A e. Fin /\ B e. Fin ) -> ~P ( B X. A ) e. Fin ) |
5 | mapsspw | |- ( A ^m B ) C_ ~P ( B X. A ) |
|
6 | ssfi | |- ( ( ~P ( B X. A ) e. Fin /\ ( A ^m B ) C_ ~P ( B X. A ) ) -> ( A ^m B ) e. Fin ) |
|
7 | 4 5 6 | sylancl | |- ( ( A e. Fin /\ B e. Fin ) -> ( A ^m B ) e. Fin ) |