| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapfien.s |  |-  S = { x e. ( B ^m A ) | x finSupp Z } | 
						
							| 2 |  | mapfien.t |  |-  T = { x e. ( D ^m C ) | x finSupp W } | 
						
							| 3 |  | mapfien.w |  |-  W = ( G ` Z ) | 
						
							| 4 |  | mapfien.f |  |-  ( ph -> F : C -1-1-onto-> A ) | 
						
							| 5 |  | mapfien.g |  |-  ( ph -> G : B -1-1-onto-> D ) | 
						
							| 6 |  | mapfien.a |  |-  ( ph -> A e. U ) | 
						
							| 7 |  | mapfien.b |  |-  ( ph -> B e. V ) | 
						
							| 8 |  | mapfien.c |  |-  ( ph -> C e. X ) | 
						
							| 9 |  | mapfien.d |  |-  ( ph -> D e. Y ) | 
						
							| 10 |  | mapfien.z |  |-  ( ph -> Z e. B ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ g e. T ) -> Z e. B ) | 
						
							| 12 |  | f1of |  |-  ( G : B -1-1-onto-> D -> G : B --> D ) | 
						
							| 13 | 5 12 | syl |  |-  ( ph -> G : B --> D ) | 
						
							| 14 | 13 10 | ffvelcdmd |  |-  ( ph -> ( G ` Z ) e. D ) | 
						
							| 15 | 3 14 | eqeltrid |  |-  ( ph -> W e. D ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ g e. T ) -> W e. D ) | 
						
							| 17 |  | elrabi |  |-  ( g e. { x e. ( D ^m C ) | x finSupp W } -> g e. ( D ^m C ) ) | 
						
							| 18 |  | elmapi |  |-  ( g e. ( D ^m C ) -> g : C --> D ) | 
						
							| 19 | 17 18 | syl |  |-  ( g e. { x e. ( D ^m C ) | x finSupp W } -> g : C --> D ) | 
						
							| 20 | 19 2 | eleq2s |  |-  ( g e. T -> g : C --> D ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ g e. T ) -> g : C --> D ) | 
						
							| 22 |  | f1ocnv |  |-  ( G : B -1-1-onto-> D -> `' G : D -1-1-onto-> B ) | 
						
							| 23 |  | f1of |  |-  ( `' G : D -1-1-onto-> B -> `' G : D --> B ) | 
						
							| 24 | 5 22 23 | 3syl |  |-  ( ph -> `' G : D --> B ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ g e. T ) -> `' G : D --> B ) | 
						
							| 26 |  | ssidd |  |-  ( ( ph /\ g e. T ) -> D C_ D ) | 
						
							| 27 | 8 | adantr |  |-  ( ( ph /\ g e. T ) -> C e. X ) | 
						
							| 28 | 9 | adantr |  |-  ( ( ph /\ g e. T ) -> D e. Y ) | 
						
							| 29 |  | breq1 |  |-  ( x = g -> ( x finSupp W <-> g finSupp W ) ) | 
						
							| 30 | 29 | elrab |  |-  ( g e. { x e. ( D ^m C ) | x finSupp W } <-> ( g e. ( D ^m C ) /\ g finSupp W ) ) | 
						
							| 31 | 30 | simprbi |  |-  ( g e. { x e. ( D ^m C ) | x finSupp W } -> g finSupp W ) | 
						
							| 32 | 31 2 | eleq2s |  |-  ( g e. T -> g finSupp W ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ g e. T ) -> g finSupp W ) | 
						
							| 34 | 5 10 | jca |  |-  ( ph -> ( G : B -1-1-onto-> D /\ Z e. B ) ) | 
						
							| 35 | 3 | eqcomi |  |-  ( G ` Z ) = W | 
						
							| 36 | 34 35 | jctir |  |-  ( ph -> ( ( G : B -1-1-onto-> D /\ Z e. B ) /\ ( G ` Z ) = W ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ g e. T ) -> ( ( G : B -1-1-onto-> D /\ Z e. B ) /\ ( G ` Z ) = W ) ) | 
						
							| 38 |  | f1ocnvfv |  |-  ( ( G : B -1-1-onto-> D /\ Z e. B ) -> ( ( G ` Z ) = W -> ( `' G ` W ) = Z ) ) | 
						
							| 39 | 38 | imp |  |-  ( ( ( G : B -1-1-onto-> D /\ Z e. B ) /\ ( G ` Z ) = W ) -> ( `' G ` W ) = Z ) | 
						
							| 40 | 37 39 | syl |  |-  ( ( ph /\ g e. T ) -> ( `' G ` W ) = Z ) | 
						
							| 41 | 11 16 21 25 26 27 28 33 40 | fsuppcor |  |-  ( ( ph /\ g e. T ) -> ( `' G o. g ) finSupp Z ) | 
						
							| 42 |  | f1ocnv |  |-  ( F : C -1-1-onto-> A -> `' F : A -1-1-onto-> C ) | 
						
							| 43 |  | f1of1 |  |-  ( `' F : A -1-1-onto-> C -> `' F : A -1-1-> C ) | 
						
							| 44 | 4 42 43 | 3syl |  |-  ( ph -> `' F : A -1-1-> C ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ g e. T ) -> `' F : A -1-1-> C ) | 
						
							| 46 | 13 7 | jca |  |-  ( ph -> ( G : B --> D /\ B e. V ) ) | 
						
							| 47 |  | fex |  |-  ( ( G : B --> D /\ B e. V ) -> G e. _V ) | 
						
							| 48 |  | cnvexg |  |-  ( G e. _V -> `' G e. _V ) | 
						
							| 49 | 46 47 48 | 3syl |  |-  ( ph -> `' G e. _V ) | 
						
							| 50 |  | coexg |  |-  ( ( `' G e. _V /\ g e. T ) -> ( `' G o. g ) e. _V ) | 
						
							| 51 | 49 50 | sylan |  |-  ( ( ph /\ g e. T ) -> ( `' G o. g ) e. _V ) | 
						
							| 52 | 41 45 11 51 | fsuppco |  |-  ( ( ph /\ g e. T ) -> ( ( `' G o. g ) o. `' F ) finSupp Z ) |