| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vex | 
							 |-  m e. _V  | 
						
						
							| 2 | 
							
								
							 | 
							foeq1 | 
							 |-  ( f = m -> ( f : A -onto-> B <-> m : A -onto-> B ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							elab | 
							 |-  ( m e. { f | f : A -onto-> B } <-> m : A -onto-> B ) | 
						
						
							| 4 | 
							
								
							 | 
							fof | 
							 |-  ( m : A -onto-> B -> m : A --> B )  | 
						
						
							| 5 | 
							
								
							 | 
							forn | 
							 |-  ( m : A -onto-> B -> ran m = B )  | 
						
						
							| 6 | 
							
								1
							 | 
							rnex | 
							 |-  ran m e. _V  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqeltrrdi | 
							 |-  ( m : A -onto-> B -> B e. _V )  | 
						
						
							| 8 | 
							
								
							 | 
							dmfex | 
							 |-  ( ( m e. _V /\ m : A --> B ) -> A e. _V )  | 
						
						
							| 9 | 
							
								1 4 8
							 | 
							sylancr | 
							 |-  ( m : A -onto-> B -> A e. _V )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							elmapd | 
							 |-  ( m : A -onto-> B -> ( m e. ( B ^m A ) <-> m : A --> B ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							mpbird | 
							 |-  ( m : A -onto-> B -> m e. ( B ^m A ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							sylbi | 
							 |-  ( m e. { f | f : A -onto-> B } -> m e. ( B ^m A ) ) | 
						
						
							| 13 | 
							
								12
							 | 
							ssriv | 
							 |-  { f | f : A -onto-> B } C_ ( B ^m A ) |