Step |
Hyp |
Ref |
Expression |
1 |
|
mapfzcons.1 |
|- M = ( N + 1 ) |
2 |
|
elmapi |
|- ( A e. ( B ^m ( 1 ... N ) ) -> A : ( 1 ... N ) --> B ) |
3 |
|
ffn |
|- ( A : ( 1 ... N ) --> B -> A Fn ( 1 ... N ) ) |
4 |
|
fnresdm |
|- ( A Fn ( 1 ... N ) -> ( A |` ( 1 ... N ) ) = A ) |
5 |
2 3 4
|
3syl |
|- ( A e. ( B ^m ( 1 ... N ) ) -> ( A |` ( 1 ... N ) ) = A ) |
6 |
5
|
uneq1d |
|- ( A e. ( B ^m ( 1 ... N ) ) -> ( ( A |` ( 1 ... N ) ) u. ( { <. M , C >. } |` ( 1 ... N ) ) ) = ( A u. ( { <. M , C >. } |` ( 1 ... N ) ) ) ) |
7 |
|
resundir |
|- ( ( A u. { <. M , C >. } ) |` ( 1 ... N ) ) = ( ( A |` ( 1 ... N ) ) u. ( { <. M , C >. } |` ( 1 ... N ) ) ) |
8 |
|
dmres |
|- dom ( { <. M , C >. } |` ( 1 ... N ) ) = ( ( 1 ... N ) i^i dom { <. M , C >. } ) |
9 |
|
dmsnopss |
|- dom { <. M , C >. } C_ { M } |
10 |
1
|
sneqi |
|- { M } = { ( N + 1 ) } |
11 |
9 10
|
sseqtri |
|- dom { <. M , C >. } C_ { ( N + 1 ) } |
12 |
|
sslin |
|- ( dom { <. M , C >. } C_ { ( N + 1 ) } -> ( ( 1 ... N ) i^i dom { <. M , C >. } ) C_ ( ( 1 ... N ) i^i { ( N + 1 ) } ) ) |
13 |
11 12
|
ax-mp |
|- ( ( 1 ... N ) i^i dom { <. M , C >. } ) C_ ( ( 1 ... N ) i^i { ( N + 1 ) } ) |
14 |
|
fzp1disj |
|- ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) |
15 |
|
sseq0 |
|- ( ( ( ( 1 ... N ) i^i dom { <. M , C >. } ) C_ ( ( 1 ... N ) i^i { ( N + 1 ) } ) /\ ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) ) -> ( ( 1 ... N ) i^i dom { <. M , C >. } ) = (/) ) |
16 |
13 14 15
|
mp2an |
|- ( ( 1 ... N ) i^i dom { <. M , C >. } ) = (/) |
17 |
8 16
|
eqtri |
|- dom ( { <. M , C >. } |` ( 1 ... N ) ) = (/) |
18 |
|
relres |
|- Rel ( { <. M , C >. } |` ( 1 ... N ) ) |
19 |
|
reldm0 |
|- ( Rel ( { <. M , C >. } |` ( 1 ... N ) ) -> ( ( { <. M , C >. } |` ( 1 ... N ) ) = (/) <-> dom ( { <. M , C >. } |` ( 1 ... N ) ) = (/) ) ) |
20 |
18 19
|
ax-mp |
|- ( ( { <. M , C >. } |` ( 1 ... N ) ) = (/) <-> dom ( { <. M , C >. } |` ( 1 ... N ) ) = (/) ) |
21 |
17 20
|
mpbir |
|- ( { <. M , C >. } |` ( 1 ... N ) ) = (/) |
22 |
21
|
uneq2i |
|- ( A u. ( { <. M , C >. } |` ( 1 ... N ) ) ) = ( A u. (/) ) |
23 |
|
un0 |
|- ( A u. (/) ) = A |
24 |
22 23
|
eqtr2i |
|- A = ( A u. ( { <. M , C >. } |` ( 1 ... N ) ) ) |
25 |
6 7 24
|
3eqtr4g |
|- ( A e. ( B ^m ( 1 ... N ) ) -> ( ( A u. { <. M , C >. } ) |` ( 1 ... N ) ) = A ) |