Step |
Hyp |
Ref |
Expression |
1 |
|
mapfzcons.1 |
|- M = ( N + 1 ) |
2 |
|
ovex |
|- ( N + 1 ) e. _V |
3 |
1 2
|
eqeltri |
|- M e. _V |
4 |
3
|
a1i |
|- ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> M e. _V ) |
5 |
|
elex |
|- ( C e. B -> C e. _V ) |
6 |
5
|
adantl |
|- ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> C e. _V ) |
7 |
|
elmapi |
|- ( A e. ( B ^m ( 1 ... N ) ) -> A : ( 1 ... N ) --> B ) |
8 |
7
|
fdmd |
|- ( A e. ( B ^m ( 1 ... N ) ) -> dom A = ( 1 ... N ) ) |
9 |
8
|
adantr |
|- ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> dom A = ( 1 ... N ) ) |
10 |
9
|
ineq1d |
|- ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> ( dom A i^i { M } ) = ( ( 1 ... N ) i^i { M } ) ) |
11 |
1
|
sneqi |
|- { M } = { ( N + 1 ) } |
12 |
11
|
ineq2i |
|- ( ( 1 ... N ) i^i { M } ) = ( ( 1 ... N ) i^i { ( N + 1 ) } ) |
13 |
|
fzp1disj |
|- ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) |
14 |
12 13
|
eqtri |
|- ( ( 1 ... N ) i^i { M } ) = (/) |
15 |
10 14
|
eqtrdi |
|- ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> ( dom A i^i { M } ) = (/) ) |
16 |
|
disjsn |
|- ( ( dom A i^i { M } ) = (/) <-> -. M e. dom A ) |
17 |
15 16
|
sylib |
|- ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> -. M e. dom A ) |
18 |
|
fsnunfv |
|- ( ( M e. _V /\ C e. _V /\ -. M e. dom A ) -> ( ( A u. { <. M , C >. } ) ` M ) = C ) |
19 |
4 6 17 18
|
syl3anc |
|- ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> ( ( A u. { <. M , C >. } ) ` M ) = C ) |