Metamath Proof Explorer


Theorem mapfzcons2

Description: Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapfzcons.1
|- M = ( N + 1 )
Assertion mapfzcons2
|- ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> ( ( A u. { <. M , C >. } ) ` M ) = C )

Proof

Step Hyp Ref Expression
1 mapfzcons.1
 |-  M = ( N + 1 )
2 ovex
 |-  ( N + 1 ) e. _V
3 1 2 eqeltri
 |-  M e. _V
4 3 a1i
 |-  ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> M e. _V )
5 elex
 |-  ( C e. B -> C e. _V )
6 5 adantl
 |-  ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> C e. _V )
7 elmapi
 |-  ( A e. ( B ^m ( 1 ... N ) ) -> A : ( 1 ... N ) --> B )
8 7 fdmd
 |-  ( A e. ( B ^m ( 1 ... N ) ) -> dom A = ( 1 ... N ) )
9 8 adantr
 |-  ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> dom A = ( 1 ... N ) )
10 9 ineq1d
 |-  ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> ( dom A i^i { M } ) = ( ( 1 ... N ) i^i { M } ) )
11 1 sneqi
 |-  { M } = { ( N + 1 ) }
12 11 ineq2i
 |-  ( ( 1 ... N ) i^i { M } ) = ( ( 1 ... N ) i^i { ( N + 1 ) } )
13 fzp1disj
 |-  ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/)
14 12 13 eqtri
 |-  ( ( 1 ... N ) i^i { M } ) = (/)
15 10 14 eqtrdi
 |-  ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> ( dom A i^i { M } ) = (/) )
16 disjsn
 |-  ( ( dom A i^i { M } ) = (/) <-> -. M e. dom A )
17 15 16 sylib
 |-  ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> -. M e. dom A )
18 fsnunfv
 |-  ( ( M e. _V /\ C e. _V /\ -. M e. dom A ) -> ( ( A u. { <. M , C >. } ) ` M ) = C )
19 4 6 17 18 syl3anc
 |-  ( ( A e. ( B ^m ( 1 ... N ) ) /\ C e. B ) -> ( ( A u. { <. M , C >. } ) ` M ) = C )