Step |
Hyp |
Ref |
Expression |
1 |
|
mappsrpr.2 |
|- C e. R. |
2 |
|
df-m1r |
|- -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
3 |
2
|
breq1i |
|- ( -1R . ] ~R <-> [ <. 1P , ( 1P +P. 1P ) >. ] ~R . ] ~R ) |
4 |
|
ltsrpr |
|- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R . ] ~R <-> ( 1P +P. 1P ) |
5 |
3 4
|
bitri |
|- ( -1R . ] ~R <-> ( 1P +P. 1P ) |
6 |
|
ltasr |
|- ( C e. R. -> ( -1R . ] ~R <-> ( C +R -1R ) . ] ~R ) ) ) |
7 |
1 6
|
ax-mp |
|- ( -1R . ] ~R <-> ( C +R -1R ) . ] ~R ) ) |
8 |
|
ltrelpr |
|- |
9 |
8
|
brel |
|- ( ( 1P +P. 1P ) ( ( 1P +P. 1P ) e. P. /\ ( ( 1P +P. 1P ) +P. A ) e. P. ) ) |
10 |
|
dmplp |
|- dom +P. = ( P. X. P. ) |
11 |
|
0npr |
|- -. (/) e. P. |
12 |
10 11
|
ndmovrcl |
|- ( ( ( 1P +P. 1P ) +P. A ) e. P. -> ( ( 1P +P. 1P ) e. P. /\ A e. P. ) ) |
13 |
12
|
simprd |
|- ( ( ( 1P +P. 1P ) +P. A ) e. P. -> A e. P. ) |
14 |
9 13
|
simpl2im |
|- ( ( 1P +P. 1P ) A e. P. ) |
15 |
|
1pr |
|- 1P e. P. |
16 |
|
addclpr |
|- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
17 |
15 15 16
|
mp2an |
|- ( 1P +P. 1P ) e. P. |
18 |
|
ltaddpr |
|- ( ( ( 1P +P. 1P ) e. P. /\ A e. P. ) -> ( 1P +P. 1P ) |
19 |
17 18
|
mpan |
|- ( A e. P. -> ( 1P +P. 1P ) |
20 |
14 19
|
impbii |
|- ( ( 1P +P. 1P ) A e. P. ) |
21 |
5 7 20
|
3bitr3i |
|- ( ( C +R -1R ) . ] ~R ) <-> A e. P. ) |