Metamath Proof Explorer


Theorem mappsrpr

Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis mappsrpr.2
|- C e. R.
Assertion mappsrpr
|- ( ( C +R -1R ) . ] ~R ) <-> A e. P. )

Proof

Step Hyp Ref Expression
1 mappsrpr.2
 |-  C e. R.
2 df-m1r
 |-  -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R
3 2 breq1i
 |-  ( -1R . ] ~R <-> [ <. 1P , ( 1P +P. 1P ) >. ] ~R . ] ~R )
4 ltsrpr
 |-  ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R . ] ~R <-> ( 1P +P. 1P ) 

5 3 4 bitri
 |-  ( -1R . ] ~R <-> ( 1P +P. 1P ) 

6 ltasr
 |-  ( C e. R. -> ( -1R . ] ~R <-> ( C +R -1R ) . ] ~R ) ) )
7 1 6 ax-mp
 |-  ( -1R . ] ~R <-> ( C +R -1R ) . ] ~R ) )
8 ltrelpr
 |-  

9 8 brel
 |-  ( ( 1P +P. 1P ) 

( ( 1P +P. 1P ) e. P. /\ ( ( 1P +P. 1P ) +P. A ) e. P. ) )

10 dmplp
 |-  dom +P. = ( P. X. P. )
11 0npr
 |-  -. (/) e. P.
12 10 11 ndmovrcl
 |-  ( ( ( 1P +P. 1P ) +P. A ) e. P. -> ( ( 1P +P. 1P ) e. P. /\ A e. P. ) )
13 12 simprd
 |-  ( ( ( 1P +P. 1P ) +P. A ) e. P. -> A e. P. )
14 9 13 simpl2im
 |-  ( ( 1P +P. 1P ) 

A e. P. )

15 1pr
 |-  1P e. P.
16 addclpr
 |-  ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. )
17 15 15 16 mp2an
 |-  ( 1P +P. 1P ) e. P.
18 ltaddpr
 |-  ( ( ( 1P +P. 1P ) e. P. /\ A e. P. ) -> ( 1P +P. 1P ) 

19 17 18 mpan
 |-  ( A e. P. -> ( 1P +P. 1P ) 

20 14 19 impbii
 |-  ( ( 1P +P. 1P ) 

A e. P. )

21 5 7 20 3bitr3i
 |-  ( ( C +R -1R ) . ] ~R ) <-> A e. P. )