| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprr |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> A ~<_ ~P B ) |
| 2 |
|
pw2eng |
|- ( B e. dom card -> ~P B ~~ ( 2o ^m B ) ) |
| 3 |
2
|
ad2antrr |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ~P B ~~ ( 2o ^m B ) ) |
| 4 |
|
domentr |
|- ( ( A ~<_ ~P B /\ ~P B ~~ ( 2o ^m B ) ) -> A ~<_ ( 2o ^m B ) ) |
| 5 |
1 3 4
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> A ~<_ ( 2o ^m B ) ) |
| 6 |
|
mapdom1 |
|- ( A ~<_ ( 2o ^m B ) -> ( A ^m B ) ~<_ ( ( 2o ^m B ) ^m B ) ) |
| 7 |
5 6
|
syl |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~<_ ( ( 2o ^m B ) ^m B ) ) |
| 8 |
|
2on |
|- 2o e. On |
| 9 |
|
simpll |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> B e. dom card ) |
| 10 |
|
mapxpen |
|- ( ( 2o e. On /\ B e. dom card /\ B e. dom card ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m ( B X. B ) ) ) |
| 11 |
8 9 9 10
|
mp3an2i |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m ( B X. B ) ) ) |
| 12 |
8
|
elexi |
|- 2o e. _V |
| 13 |
12
|
enref |
|- 2o ~~ 2o |
| 14 |
|
infxpidm2 |
|- ( ( B e. dom card /\ _om ~<_ B ) -> ( B X. B ) ~~ B ) |
| 15 |
14
|
adantr |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( B X. B ) ~~ B ) |
| 16 |
|
mapen |
|- ( ( 2o ~~ 2o /\ ( B X. B ) ~~ B ) -> ( 2o ^m ( B X. B ) ) ~~ ( 2o ^m B ) ) |
| 17 |
13 15 16
|
sylancr |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( 2o ^m ( B X. B ) ) ~~ ( 2o ^m B ) ) |
| 18 |
|
entr |
|- ( ( ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m ( B X. B ) ) /\ ( 2o ^m ( B X. B ) ) ~~ ( 2o ^m B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m B ) ) |
| 19 |
11 17 18
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m B ) ) |
| 20 |
3
|
ensymd |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( 2o ^m B ) ~~ ~P B ) |
| 21 |
|
entr |
|- ( ( ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m B ) /\ ( 2o ^m B ) ~~ ~P B ) -> ( ( 2o ^m B ) ^m B ) ~~ ~P B ) |
| 22 |
19 20 21
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ~P B ) |
| 23 |
|
domentr |
|- ( ( ( A ^m B ) ~<_ ( ( 2o ^m B ) ^m B ) /\ ( ( 2o ^m B ) ^m B ) ~~ ~P B ) -> ( A ^m B ) ~<_ ~P B ) |
| 24 |
7 22 23
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~<_ ~P B ) |
| 25 |
|
mapdom1 |
|- ( 2o ~<_ A -> ( 2o ^m B ) ~<_ ( A ^m B ) ) |
| 26 |
25
|
ad2antrl |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( 2o ^m B ) ~<_ ( A ^m B ) ) |
| 27 |
|
endomtr |
|- ( ( ~P B ~~ ( 2o ^m B ) /\ ( 2o ^m B ) ~<_ ( A ^m B ) ) -> ~P B ~<_ ( A ^m B ) ) |
| 28 |
3 26 27
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ~P B ~<_ ( A ^m B ) ) |
| 29 |
|
sbth |
|- ( ( ( A ^m B ) ~<_ ~P B /\ ~P B ~<_ ( A ^m B ) ) -> ( A ^m B ) ~~ ~P B ) |
| 30 |
24 28 29
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~~ ~P B ) |