Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> A ~<_ ~P B ) |
2 |
|
pw2eng |
|- ( B e. dom card -> ~P B ~~ ( 2o ^m B ) ) |
3 |
2
|
ad2antrr |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ~P B ~~ ( 2o ^m B ) ) |
4 |
|
domentr |
|- ( ( A ~<_ ~P B /\ ~P B ~~ ( 2o ^m B ) ) -> A ~<_ ( 2o ^m B ) ) |
5 |
1 3 4
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> A ~<_ ( 2o ^m B ) ) |
6 |
|
mapdom1 |
|- ( A ~<_ ( 2o ^m B ) -> ( A ^m B ) ~<_ ( ( 2o ^m B ) ^m B ) ) |
7 |
5 6
|
syl |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~<_ ( ( 2o ^m B ) ^m B ) ) |
8 |
|
2on |
|- 2o e. On |
9 |
|
simpll |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> B e. dom card ) |
10 |
|
mapxpen |
|- ( ( 2o e. On /\ B e. dom card /\ B e. dom card ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m ( B X. B ) ) ) |
11 |
8 9 9 10
|
mp3an2i |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m ( B X. B ) ) ) |
12 |
8
|
elexi |
|- 2o e. _V |
13 |
12
|
enref |
|- 2o ~~ 2o |
14 |
|
infxpidm2 |
|- ( ( B e. dom card /\ _om ~<_ B ) -> ( B X. B ) ~~ B ) |
15 |
14
|
adantr |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( B X. B ) ~~ B ) |
16 |
|
mapen |
|- ( ( 2o ~~ 2o /\ ( B X. B ) ~~ B ) -> ( 2o ^m ( B X. B ) ) ~~ ( 2o ^m B ) ) |
17 |
13 15 16
|
sylancr |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( 2o ^m ( B X. B ) ) ~~ ( 2o ^m B ) ) |
18 |
|
entr |
|- ( ( ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m ( B X. B ) ) /\ ( 2o ^m ( B X. B ) ) ~~ ( 2o ^m B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m B ) ) |
19 |
11 17 18
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m B ) ) |
20 |
3
|
ensymd |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( 2o ^m B ) ~~ ~P B ) |
21 |
|
entr |
|- ( ( ( ( 2o ^m B ) ^m B ) ~~ ( 2o ^m B ) /\ ( 2o ^m B ) ~~ ~P B ) -> ( ( 2o ^m B ) ^m B ) ~~ ~P B ) |
22 |
19 20 21
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( ( 2o ^m B ) ^m B ) ~~ ~P B ) |
23 |
|
domentr |
|- ( ( ( A ^m B ) ~<_ ( ( 2o ^m B ) ^m B ) /\ ( ( 2o ^m B ) ^m B ) ~~ ~P B ) -> ( A ^m B ) ~<_ ~P B ) |
24 |
7 22 23
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~<_ ~P B ) |
25 |
|
mapdom1 |
|- ( 2o ~<_ A -> ( 2o ^m B ) ~<_ ( A ^m B ) ) |
26 |
25
|
ad2antrl |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( 2o ^m B ) ~<_ ( A ^m B ) ) |
27 |
|
endomtr |
|- ( ( ~P B ~~ ( 2o ^m B ) /\ ( 2o ^m B ) ~<_ ( A ^m B ) ) -> ~P B ~<_ ( A ^m B ) ) |
28 |
3 26 27
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ~P B ~<_ ( A ^m B ) ) |
29 |
|
sbth |
|- ( ( ( A ^m B ) ~<_ ~P B /\ ~P B ~<_ ( A ^m B ) ) -> ( A ^m B ) ~~ ~P B ) |
30 |
24 28 29
|
syl2anc |
|- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( 2o ~<_ A /\ A ~<_ ~P B ) ) -> ( A ^m B ) ~~ ~P B ) |