| Step | Hyp | Ref | Expression | 
						
							| 1 |  | maprnin.1 |  |-  A e. _V | 
						
							| 2 |  | maprnin.2 |  |-  B e. _V | 
						
							| 3 |  | ffn |  |-  ( f : A --> B -> f Fn A ) | 
						
							| 4 |  | df-f |  |-  ( f : A --> C <-> ( f Fn A /\ ran f C_ C ) ) | 
						
							| 5 | 4 | baibr |  |-  ( f Fn A -> ( ran f C_ C <-> f : A --> C ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( f : A --> B -> ( ran f C_ C <-> f : A --> C ) ) | 
						
							| 7 | 6 | pm5.32i |  |-  ( ( f : A --> B /\ ran f C_ C ) <-> ( f : A --> B /\ f : A --> C ) ) | 
						
							| 8 | 2 1 | elmap |  |-  ( f e. ( B ^m A ) <-> f : A --> B ) | 
						
							| 9 | 8 | anbi1i |  |-  ( ( f e. ( B ^m A ) /\ ran f C_ C ) <-> ( f : A --> B /\ ran f C_ C ) ) | 
						
							| 10 |  | fin |  |-  ( f : A --> ( B i^i C ) <-> ( f : A --> B /\ f : A --> C ) ) | 
						
							| 11 | 7 9 10 | 3bitr4ri |  |-  ( f : A --> ( B i^i C ) <-> ( f e. ( B ^m A ) /\ ran f C_ C ) ) | 
						
							| 12 | 11 | abbii |  |-  { f | f : A --> ( B i^i C ) } = { f | ( f e. ( B ^m A ) /\ ran f C_ C ) } | 
						
							| 13 | 2 | inex1 |  |-  ( B i^i C ) e. _V | 
						
							| 14 | 13 1 | mapval |  |-  ( ( B i^i C ) ^m A ) = { f | f : A --> ( B i^i C ) } | 
						
							| 15 |  | df-rab |  |-  { f e. ( B ^m A ) | ran f C_ C } = { f | ( f e. ( B ^m A ) /\ ran f C_ C ) } | 
						
							| 16 | 12 14 15 | 3eqtr4i |  |-  ( ( B i^i C ) ^m A ) = { f e. ( B ^m A ) | ran f C_ C } |