Step |
Hyp |
Ref |
Expression |
1 |
|
maprnin.1 |
|- A e. _V |
2 |
|
maprnin.2 |
|- B e. _V |
3 |
|
ffn |
|- ( f : A --> B -> f Fn A ) |
4 |
|
df-f |
|- ( f : A --> C <-> ( f Fn A /\ ran f C_ C ) ) |
5 |
4
|
baibr |
|- ( f Fn A -> ( ran f C_ C <-> f : A --> C ) ) |
6 |
3 5
|
syl |
|- ( f : A --> B -> ( ran f C_ C <-> f : A --> C ) ) |
7 |
6
|
pm5.32i |
|- ( ( f : A --> B /\ ran f C_ C ) <-> ( f : A --> B /\ f : A --> C ) ) |
8 |
2 1
|
elmap |
|- ( f e. ( B ^m A ) <-> f : A --> B ) |
9 |
8
|
anbi1i |
|- ( ( f e. ( B ^m A ) /\ ran f C_ C ) <-> ( f : A --> B /\ ran f C_ C ) ) |
10 |
|
fin |
|- ( f : A --> ( B i^i C ) <-> ( f : A --> B /\ f : A --> C ) ) |
11 |
7 9 10
|
3bitr4ri |
|- ( f : A --> ( B i^i C ) <-> ( f e. ( B ^m A ) /\ ran f C_ C ) ) |
12 |
11
|
abbii |
|- { f | f : A --> ( B i^i C ) } = { f | ( f e. ( B ^m A ) /\ ran f C_ C ) } |
13 |
2
|
inex1 |
|- ( B i^i C ) e. _V |
14 |
13 1
|
mapval |
|- ( ( B i^i C ) ^m A ) = { f | f : A --> ( B i^i C ) } |
15 |
|
df-rab |
|- { f e. ( B ^m A ) | ran f C_ C } = { f | ( f e. ( B ^m A ) /\ ran f C_ C ) } |
16 |
12 14 15
|
3eqtr4i |
|- ( ( B i^i C ) ^m A ) = { f e. ( B ^m A ) | ran f C_ C } |