Step |
Hyp |
Ref |
Expression |
1 |
|
mapsncnv.s |
|- S = { X } |
2 |
|
mapsncnv.b |
|- B e. _V |
3 |
|
mapsncnv.x |
|- X e. _V |
4 |
|
snex |
|- { X } e. _V |
5 |
2 4
|
elmap |
|- ( F e. ( B ^m { X } ) <-> F : { X } --> B ) |
6 |
3
|
fsn2 |
|- ( F : { X } --> B <-> ( ( F ` X ) e. B /\ F = { <. X , ( F ` X ) >. } ) ) |
7 |
6
|
simprbi |
|- ( F : { X } --> B -> F = { <. X , ( F ` X ) >. } ) |
8 |
1
|
xpeq1i |
|- ( S X. { ( F ` X ) } ) = ( { X } X. { ( F ` X ) } ) |
9 |
|
fvex |
|- ( F ` X ) e. _V |
10 |
3 9
|
xpsn |
|- ( { X } X. { ( F ` X ) } ) = { <. X , ( F ` X ) >. } |
11 |
8 10
|
eqtr2i |
|- { <. X , ( F ` X ) >. } = ( S X. { ( F ` X ) } ) |
12 |
7 11
|
eqtrdi |
|- ( F : { X } --> B -> F = ( S X. { ( F ` X ) } ) ) |
13 |
5 12
|
sylbi |
|- ( F e. ( B ^m { X } ) -> F = ( S X. { ( F ` X ) } ) ) |
14 |
1
|
oveq2i |
|- ( B ^m S ) = ( B ^m { X } ) |
15 |
13 14
|
eleq2s |
|- ( F e. ( B ^m S ) -> F = ( S X. { ( F ` X ) } ) ) |