| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapsnd.1 |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | mapsnd.2 |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | snex |  |-  { B } e. _V | 
						
							| 4 | 3 | a1i |  |-  ( ph -> { B } e. _V ) | 
						
							| 5 | 1 4 | elmapd |  |-  ( ph -> ( f e. ( A ^m { B } ) <-> f : { B } --> A ) ) | 
						
							| 6 |  | ffn |  |-  ( f : { B } --> A -> f Fn { B } ) | 
						
							| 7 |  | snidg |  |-  ( B e. W -> B e. { B } ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> B e. { B } ) | 
						
							| 9 |  | fneu |  |-  ( ( f Fn { B } /\ B e. { B } ) -> E! y B f y ) | 
						
							| 10 | 6 8 9 | syl2anr |  |-  ( ( ph /\ f : { B } --> A ) -> E! y B f y ) | 
						
							| 11 |  | euabsn |  |-  ( E! y B f y <-> E. y { y | B f y } = { y } ) | 
						
							| 12 |  | frel |  |-  ( f : { B } --> A -> Rel f ) | 
						
							| 13 |  | relimasn |  |-  ( Rel f -> ( f " { B } ) = { y | B f y } ) | 
						
							| 14 | 12 13 | syl |  |-  ( f : { B } --> A -> ( f " { B } ) = { y | B f y } ) | 
						
							| 15 |  | fdm |  |-  ( f : { B } --> A -> dom f = { B } ) | 
						
							| 16 | 15 | imaeq2d |  |-  ( f : { B } --> A -> ( f " dom f ) = ( f " { B } ) ) | 
						
							| 17 |  | imadmrn |  |-  ( f " dom f ) = ran f | 
						
							| 18 | 16 17 | eqtr3di |  |-  ( f : { B } --> A -> ( f " { B } ) = ran f ) | 
						
							| 19 | 14 18 | eqtr3d |  |-  ( f : { B } --> A -> { y | B f y } = ran f ) | 
						
							| 20 | 19 | eqeq1d |  |-  ( f : { B } --> A -> ( { y | B f y } = { y } <-> ran f = { y } ) ) | 
						
							| 21 | 20 | exbidv |  |-  ( f : { B } --> A -> ( E. y { y | B f y } = { y } <-> E. y ran f = { y } ) ) | 
						
							| 22 | 11 21 | bitrid |  |-  ( f : { B } --> A -> ( E! y B f y <-> E. y ran f = { y } ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ f : { B } --> A ) -> ( E! y B f y <-> E. y ran f = { y } ) ) | 
						
							| 24 | 10 23 | mpbid |  |-  ( ( ph /\ f : { B } --> A ) -> E. y ran f = { y } ) | 
						
							| 25 |  | frn |  |-  ( f : { B } --> A -> ran f C_ A ) | 
						
							| 26 | 25 | sseld |  |-  ( f : { B } --> A -> ( y e. ran f -> y e. A ) ) | 
						
							| 27 |  | vsnid |  |-  y e. { y } | 
						
							| 28 |  | eleq2 |  |-  ( ran f = { y } -> ( y e. ran f <-> y e. { y } ) ) | 
						
							| 29 | 27 28 | mpbiri |  |-  ( ran f = { y } -> y e. ran f ) | 
						
							| 30 | 26 29 | impel |  |-  ( ( f : { B } --> A /\ ran f = { y } ) -> y e. A ) | 
						
							| 31 | 30 | adantll |  |-  ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> y e. A ) | 
						
							| 32 |  | ffrn |  |-  ( f : { B } --> A -> f : { B } --> ran f ) | 
						
							| 33 |  | feq3 |  |-  ( ran f = { y } -> ( f : { B } --> ran f <-> f : { B } --> { y } ) ) | 
						
							| 34 | 32 33 | syl5ibcom |  |-  ( f : { B } --> A -> ( ran f = { y } -> f : { B } --> { y } ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( f : { B } --> A /\ ran f = { y } ) -> f : { B } --> { y } ) | 
						
							| 36 | 35 | adantll |  |-  ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> f : { B } --> { y } ) | 
						
							| 37 | 2 | ad2antrr |  |-  ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> B e. W ) | 
						
							| 38 |  | vex |  |-  y e. _V | 
						
							| 39 |  | fsng |  |-  ( ( B e. W /\ y e. _V ) -> ( f : { B } --> { y } <-> f = { <. B , y >. } ) ) | 
						
							| 40 | 37 38 39 | sylancl |  |-  ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> ( f : { B } --> { y } <-> f = { <. B , y >. } ) ) | 
						
							| 41 | 36 40 | mpbid |  |-  ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> f = { <. B , y >. } ) | 
						
							| 42 | 31 41 | jca |  |-  ( ( ( ph /\ f : { B } --> A ) /\ ran f = { y } ) -> ( y e. A /\ f = { <. B , y >. } ) ) | 
						
							| 43 | 42 | ex |  |-  ( ( ph /\ f : { B } --> A ) -> ( ran f = { y } -> ( y e. A /\ f = { <. B , y >. } ) ) ) | 
						
							| 44 | 43 | eximdv |  |-  ( ( ph /\ f : { B } --> A ) -> ( E. y ran f = { y } -> E. y ( y e. A /\ f = { <. B , y >. } ) ) ) | 
						
							| 45 | 24 44 | mpd |  |-  ( ( ph /\ f : { B } --> A ) -> E. y ( y e. A /\ f = { <. B , y >. } ) ) | 
						
							| 46 |  | df-rex |  |-  ( E. y e. A f = { <. B , y >. } <-> E. y ( y e. A /\ f = { <. B , y >. } ) ) | 
						
							| 47 | 45 46 | sylibr |  |-  ( ( ph /\ f : { B } --> A ) -> E. y e. A f = { <. B , y >. } ) | 
						
							| 48 | 47 | ex |  |-  ( ph -> ( f : { B } --> A -> E. y e. A f = { <. B , y >. } ) ) | 
						
							| 49 |  | f1osng |  |-  ( ( B e. W /\ y e. _V ) -> { <. B , y >. } : { B } -1-1-onto-> { y } ) | 
						
							| 50 | 2 38 49 | sylancl |  |-  ( ph -> { <. B , y >. } : { B } -1-1-onto-> { y } ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ f = { <. B , y >. } ) -> { <. B , y >. } : { B } -1-1-onto-> { y } ) | 
						
							| 52 |  | f1oeq1 |  |-  ( f = { <. B , y >. } -> ( f : { B } -1-1-onto-> { y } <-> { <. B , y >. } : { B } -1-1-onto-> { y } ) ) | 
						
							| 53 | 52 | bicomd |  |-  ( f = { <. B , y >. } -> ( { <. B , y >. } : { B } -1-1-onto-> { y } <-> f : { B } -1-1-onto-> { y } ) ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ph /\ f = { <. B , y >. } ) -> ( { <. B , y >. } : { B } -1-1-onto-> { y } <-> f : { B } -1-1-onto-> { y } ) ) | 
						
							| 55 | 51 54 | mpbid |  |-  ( ( ph /\ f = { <. B , y >. } ) -> f : { B } -1-1-onto-> { y } ) | 
						
							| 56 |  | f1of |  |-  ( f : { B } -1-1-onto-> { y } -> f : { B } --> { y } ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ph /\ f = { <. B , y >. } ) -> f : { B } --> { y } ) | 
						
							| 58 | 57 | 3adant2 |  |-  ( ( ph /\ y e. A /\ f = { <. B , y >. } ) -> f : { B } --> { y } ) | 
						
							| 59 |  | snssi |  |-  ( y e. A -> { y } C_ A ) | 
						
							| 60 | 59 | 3ad2ant2 |  |-  ( ( ph /\ y e. A /\ f = { <. B , y >. } ) -> { y } C_ A ) | 
						
							| 61 | 58 60 | fssd |  |-  ( ( ph /\ y e. A /\ f = { <. B , y >. } ) -> f : { B } --> A ) | 
						
							| 62 | 61 | rexlimdv3a |  |-  ( ph -> ( E. y e. A f = { <. B , y >. } -> f : { B } --> A ) ) | 
						
							| 63 | 48 62 | impbid |  |-  ( ph -> ( f : { B } --> A <-> E. y e. A f = { <. B , y >. } ) ) | 
						
							| 64 | 5 63 | bitrd |  |-  ( ph -> ( f e. ( A ^m { B } ) <-> E. y e. A f = { <. B , y >. } ) ) | 
						
							| 65 | 64 | eqabdv |  |-  ( ph -> ( A ^m { B } ) = { f | E. y e. A f = { <. B , y >. } } ) |