Step |
Hyp |
Ref |
Expression |
1 |
|
mapsnend.a |
|- ( ph -> A e. V ) |
2 |
|
mapsnend.b |
|- ( ph -> B e. W ) |
3 |
|
ovexd |
|- ( ph -> ( A ^m { B } ) e. _V ) |
4 |
|
fvexd |
|- ( z e. ( A ^m { B } ) -> ( z ` B ) e. _V ) |
5 |
4
|
a1i |
|- ( ph -> ( z e. ( A ^m { B } ) -> ( z ` B ) e. _V ) ) |
6 |
|
snex |
|- { <. B , w >. } e. _V |
7 |
6
|
2a1i |
|- ( ph -> ( w e. A -> { <. B , w >. } e. _V ) ) |
8 |
1 2
|
mapsnd |
|- ( ph -> ( A ^m { B } ) = { z | E. y e. A z = { <. B , y >. } } ) |
9 |
8
|
abeq2d |
|- ( ph -> ( z e. ( A ^m { B } ) <-> E. y e. A z = { <. B , y >. } ) ) |
10 |
9
|
anbi1d |
|- ( ph -> ( ( z e. ( A ^m { B } ) /\ w = ( z ` B ) ) <-> ( E. y e. A z = { <. B , y >. } /\ w = ( z ` B ) ) ) ) |
11 |
|
r19.41v |
|- ( E. y e. A ( z = { <. B , y >. } /\ w = ( z ` B ) ) <-> ( E. y e. A z = { <. B , y >. } /\ w = ( z ` B ) ) ) |
12 |
11
|
bicomi |
|- ( ( E. y e. A z = { <. B , y >. } /\ w = ( z ` B ) ) <-> E. y e. A ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) |
13 |
12
|
a1i |
|- ( ph -> ( ( E. y e. A z = { <. B , y >. } /\ w = ( z ` B ) ) <-> E. y e. A ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) ) |
14 |
|
df-rex |
|- ( E. y e. A ( z = { <. B , y >. } /\ w = ( z ` B ) ) <-> E. y ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) ) |
15 |
14
|
a1i |
|- ( ph -> ( E. y e. A ( z = { <. B , y >. } /\ w = ( z ` B ) ) <-> E. y ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) ) ) |
16 |
10 13 15
|
3bitrd |
|- ( ph -> ( ( z e. ( A ^m { B } ) /\ w = ( z ` B ) ) <-> E. y ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) ) ) |
17 |
|
fveq1 |
|- ( z = { <. B , y >. } -> ( z ` B ) = ( { <. B , y >. } ` B ) ) |
18 |
|
vex |
|- y e. _V |
19 |
|
fvsng |
|- ( ( B e. W /\ y e. _V ) -> ( { <. B , y >. } ` B ) = y ) |
20 |
2 18 19
|
sylancl |
|- ( ph -> ( { <. B , y >. } ` B ) = y ) |
21 |
17 20
|
sylan9eqr |
|- ( ( ph /\ z = { <. B , y >. } ) -> ( z ` B ) = y ) |
22 |
21
|
eqeq2d |
|- ( ( ph /\ z = { <. B , y >. } ) -> ( w = ( z ` B ) <-> w = y ) ) |
23 |
|
equcom |
|- ( w = y <-> y = w ) |
24 |
22 23
|
bitrdi |
|- ( ( ph /\ z = { <. B , y >. } ) -> ( w = ( z ` B ) <-> y = w ) ) |
25 |
24
|
pm5.32da |
|- ( ph -> ( ( z = { <. B , y >. } /\ w = ( z ` B ) ) <-> ( z = { <. B , y >. } /\ y = w ) ) ) |
26 |
25
|
anbi2d |
|- ( ph -> ( ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) <-> ( y e. A /\ ( z = { <. B , y >. } /\ y = w ) ) ) ) |
27 |
|
anass |
|- ( ( ( y e. A /\ z = { <. B , y >. } ) /\ y = w ) <-> ( y e. A /\ ( z = { <. B , y >. } /\ y = w ) ) ) |
28 |
27
|
a1i |
|- ( ph -> ( ( ( y e. A /\ z = { <. B , y >. } ) /\ y = w ) <-> ( y e. A /\ ( z = { <. B , y >. } /\ y = w ) ) ) ) |
29 |
|
ancom |
|- ( ( ( y e. A /\ z = { <. B , y >. } ) /\ y = w ) <-> ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) ) |
30 |
29
|
a1i |
|- ( ph -> ( ( ( y e. A /\ z = { <. B , y >. } ) /\ y = w ) <-> ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) ) ) |
31 |
26 28 30
|
3bitr2d |
|- ( ph -> ( ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) <-> ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) ) ) |
32 |
31
|
exbidv |
|- ( ph -> ( E. y ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) <-> E. y ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) ) ) |
33 |
|
eleq1w |
|- ( y = w -> ( y e. A <-> w e. A ) ) |
34 |
|
opeq2 |
|- ( y = w -> <. B , y >. = <. B , w >. ) |
35 |
34
|
sneqd |
|- ( y = w -> { <. B , y >. } = { <. B , w >. } ) |
36 |
35
|
eqeq2d |
|- ( y = w -> ( z = { <. B , y >. } <-> z = { <. B , w >. } ) ) |
37 |
33 36
|
anbi12d |
|- ( y = w -> ( ( y e. A /\ z = { <. B , y >. } ) <-> ( w e. A /\ z = { <. B , w >. } ) ) ) |
38 |
37
|
equsexvw |
|- ( E. y ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) <-> ( w e. A /\ z = { <. B , w >. } ) ) |
39 |
38
|
a1i |
|- ( ph -> ( E. y ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) <-> ( w e. A /\ z = { <. B , w >. } ) ) ) |
40 |
16 32 39
|
3bitrd |
|- ( ph -> ( ( z e. ( A ^m { B } ) /\ w = ( z ` B ) ) <-> ( w e. A /\ z = { <. B , w >. } ) ) ) |
41 |
3 1 5 7 40
|
en2d |
|- ( ph -> ( A ^m { B } ) ~~ A ) |