Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapsspm | |- ( A ^m B ) C_ ( A ^pm B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex | |- ( f e. ( A ^m B ) -> ( A e. _V /\ B e. _V ) ) |
|
| 2 | 1 | simprd | |- ( f e. ( A ^m B ) -> B e. _V ) |
| 3 | 1 | simpld | |- ( f e. ( A ^m B ) -> A e. _V ) |
| 4 | elmapi | |- ( f e. ( A ^m B ) -> f : B --> A ) |
|
| 5 | fpmg | |- ( ( B e. _V /\ A e. _V /\ f : B --> A ) -> f e. ( A ^pm B ) ) |
|
| 6 | 2 3 4 5 | syl3anc | |- ( f e. ( A ^m B ) -> f e. ( A ^pm B ) ) |
| 7 | 6 | ssriv | |- ( A ^m B ) C_ ( A ^pm B ) |