Description: The value of set exponentiation (inference version). ( A ^m B ) is the set of all functions that map from B to A . Definition 10.24 of Kunen p. 24. (Contributed by NM, 8-Dec-2003)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapval.1 | |- A e. _V |
|
mapval.2 | |- B e. _V |
||
Assertion | mapval | |- ( A ^m B ) = { f | f : B --> A } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapval.1 | |- A e. _V |
|
2 | mapval.2 | |- B e. _V |
|
3 | mapvalg | |- ( ( A e. _V /\ B e. _V ) -> ( A ^m B ) = { f | f : B --> A } ) |
|
4 | 1 2 3 | mp2an | |- ( A ^m B ) = { f | f : B --> A } |