Metamath Proof Explorer


Theorem mapval

Description: The value of set exponentiation (inference version). ( A ^m B ) is the set of all functions that map from B to A . Definition 10.24 of Kunen p. 24. (Contributed by NM, 8-Dec-2003)

Ref Expression
Hypotheses mapval.1
|- A e. _V
mapval.2
|- B e. _V
Assertion mapval
|- ( A ^m B ) = { f | f : B --> A }

Proof

Step Hyp Ref Expression
1 mapval.1
 |-  A e. _V
2 mapval.2
 |-  B e. _V
3 mapvalg
 |-  ( ( A e. _V /\ B e. _V ) -> ( A ^m B ) = { f | f : B --> A } )
4 1 2 3 mp2an
 |-  ( A ^m B ) = { f | f : B --> A }