Step |
Hyp |
Ref |
Expression |
1 |
|
marrepfval.a |
|- A = ( N Mat R ) |
2 |
|
marrepfval.b |
|- B = ( Base ` A ) |
3 |
|
marrepfval.q |
|- Q = ( N matRRep R ) |
4 |
|
marrepfval.z |
|- .0. = ( 0g ` R ) |
5 |
1 2 3 4
|
marrepval |
|- ( ( ( M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ L e. N ) ) -> ( K ( M Q S ) L ) = ( i e. N , j e. N |-> if ( i = K , if ( j = L , S , .0. ) , ( i M j ) ) ) ) |
6 |
5
|
3adant3 |
|- ( ( ( M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ L e. N ) /\ ( I e. N /\ J e. N ) ) -> ( K ( M Q S ) L ) = ( i e. N , j e. N |-> if ( i = K , if ( j = L , S , .0. ) , ( i M j ) ) ) ) |
7 |
|
simp3l |
|- ( ( ( M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ L e. N ) /\ ( I e. N /\ J e. N ) ) -> I e. N ) |
8 |
|
simpl3r |
|- ( ( ( ( M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ L e. N ) /\ ( I e. N /\ J e. N ) ) /\ i = I ) -> J e. N ) |
9 |
4
|
fvexi |
|- .0. e. _V |
10 |
|
ifexg |
|- ( ( S e. ( Base ` R ) /\ .0. e. _V ) -> if ( j = L , S , .0. ) e. _V ) |
11 |
9 10
|
mpan2 |
|- ( S e. ( Base ` R ) -> if ( j = L , S , .0. ) e. _V ) |
12 |
|
ovexd |
|- ( S e. ( Base ` R ) -> ( i M j ) e. _V ) |
13 |
11 12
|
ifcld |
|- ( S e. ( Base ` R ) -> if ( i = K , if ( j = L , S , .0. ) , ( i M j ) ) e. _V ) |
14 |
13
|
adantl |
|- ( ( M e. B /\ S e. ( Base ` R ) ) -> if ( i = K , if ( j = L , S , .0. ) , ( i M j ) ) e. _V ) |
15 |
14
|
3ad2ant1 |
|- ( ( ( M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ L e. N ) /\ ( I e. N /\ J e. N ) ) -> if ( i = K , if ( j = L , S , .0. ) , ( i M j ) ) e. _V ) |
16 |
15
|
adantr |
|- ( ( ( ( M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ L e. N ) /\ ( I e. N /\ J e. N ) ) /\ ( i = I /\ j = J ) ) -> if ( i = K , if ( j = L , S , .0. ) , ( i M j ) ) e. _V ) |
17 |
|
eqeq1 |
|- ( i = I -> ( i = K <-> I = K ) ) |
18 |
17
|
adantr |
|- ( ( i = I /\ j = J ) -> ( i = K <-> I = K ) ) |
19 |
|
eqeq1 |
|- ( j = J -> ( j = L <-> J = L ) ) |
20 |
19
|
ifbid |
|- ( j = J -> if ( j = L , S , .0. ) = if ( J = L , S , .0. ) ) |
21 |
20
|
adantl |
|- ( ( i = I /\ j = J ) -> if ( j = L , S , .0. ) = if ( J = L , S , .0. ) ) |
22 |
|
oveq12 |
|- ( ( i = I /\ j = J ) -> ( i M j ) = ( I M J ) ) |
23 |
18 21 22
|
ifbieq12d |
|- ( ( i = I /\ j = J ) -> if ( i = K , if ( j = L , S , .0. ) , ( i M j ) ) = if ( I = K , if ( J = L , S , .0. ) , ( I M J ) ) ) |
24 |
23
|
adantl |
|- ( ( ( ( M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ L e. N ) /\ ( I e. N /\ J e. N ) ) /\ ( i = I /\ j = J ) ) -> if ( i = K , if ( j = L , S , .0. ) , ( i M j ) ) = if ( I = K , if ( J = L , S , .0. ) , ( I M J ) ) ) |
25 |
7 8 16 24
|
ovmpodv2 |
|- ( ( ( M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ L e. N ) /\ ( I e. N /\ J e. N ) ) -> ( ( K ( M Q S ) L ) = ( i e. N , j e. N |-> if ( i = K , if ( j = L , S , .0. ) , ( i M j ) ) ) -> ( I ( K ( M Q S ) L ) J ) = if ( I = K , if ( J = L , S , .0. ) , ( I M J ) ) ) ) |
26 |
6 25
|
mpd |
|- ( ( ( M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ L e. N ) /\ ( I e. N /\ J e. N ) ) -> ( I ( K ( M Q S ) L ) J ) = if ( I = K , if ( J = L , S , .0. ) , ( I M J ) ) ) |