Step |
Hyp |
Ref |
Expression |
1 |
|
marrepfval.a |
|- A = ( N Mat R ) |
2 |
|
marrepfval.b |
|- B = ( Base ` A ) |
3 |
|
marrepfval.q |
|- Q = ( N matRRep R ) |
4 |
|
marrepfval.z |
|- .0. = ( 0g ` R ) |
5 |
1 2
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
6 |
5
|
simpld |
|- ( M e. B -> N e. Fin ) |
7 |
6 6
|
jca |
|- ( M e. B -> ( N e. Fin /\ N e. Fin ) ) |
8 |
7
|
adantr |
|- ( ( M e. B /\ S e. ( Base ` R ) ) -> ( N e. Fin /\ N e. Fin ) ) |
9 |
|
mpoexga |
|- ( ( N e. Fin /\ N e. Fin ) -> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , S , .0. ) , ( i M j ) ) ) ) e. _V ) |
10 |
8 9
|
syl |
|- ( ( M e. B /\ S e. ( Base ` R ) ) -> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , S , .0. ) , ( i M j ) ) ) ) e. _V ) |
11 |
|
ifeq1 |
|- ( s = S -> if ( j = l , s , .0. ) = if ( j = l , S , .0. ) ) |
12 |
11
|
adantl |
|- ( ( m = M /\ s = S ) -> if ( j = l , s , .0. ) = if ( j = l , S , .0. ) ) |
13 |
|
oveq |
|- ( m = M -> ( i m j ) = ( i M j ) ) |
14 |
13
|
adantr |
|- ( ( m = M /\ s = S ) -> ( i m j ) = ( i M j ) ) |
15 |
12 14
|
ifeq12d |
|- ( ( m = M /\ s = S ) -> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) = if ( i = k , if ( j = l , S , .0. ) , ( i M j ) ) ) |
16 |
15
|
mpoeq3dv |
|- ( ( m = M /\ s = S ) -> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) = ( i e. N , j e. N |-> if ( i = k , if ( j = l , S , .0. ) , ( i M j ) ) ) ) |
17 |
16
|
mpoeq3dv |
|- ( ( m = M /\ s = S ) -> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , S , .0. ) , ( i M j ) ) ) ) ) |
18 |
1 2 3 4
|
marrepfval |
|- Q = ( m e. B , s e. ( Base ` R ) |-> ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , s , .0. ) , ( i m j ) ) ) ) ) |
19 |
17 18
|
ovmpoga |
|- ( ( M e. B /\ S e. ( Base ` R ) /\ ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , S , .0. ) , ( i M j ) ) ) ) e. _V ) -> ( M Q S ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , S , .0. ) , ( i M j ) ) ) ) ) |
20 |
10 19
|
mpd3an3 |
|- ( ( M e. B /\ S e. ( Base ` R ) ) -> ( M Q S ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , S , .0. ) , ( i M j ) ) ) ) ) |