Step |
Hyp |
Ref |
Expression |
1 |
|
marypha1.a |
|- ( ph -> A e. Fin ) |
2 |
|
marypha1.b |
|- ( ph -> B e. Fin ) |
3 |
|
marypha1.c |
|- ( ph -> C C_ ( A X. B ) ) |
4 |
|
marypha1.d |
|- ( ( ph /\ d C_ A ) -> d ~<_ ( C " d ) ) |
5 |
|
elpwi |
|- ( d e. ~P A -> d C_ A ) |
6 |
5 4
|
sylan2 |
|- ( ( ph /\ d e. ~P A ) -> d ~<_ ( C " d ) ) |
7 |
6
|
ralrimiva |
|- ( ph -> A. d e. ~P A d ~<_ ( C " d ) ) |
8 |
|
imaeq1 |
|- ( c = C -> ( c " d ) = ( C " d ) ) |
9 |
8
|
breq2d |
|- ( c = C -> ( d ~<_ ( c " d ) <-> d ~<_ ( C " d ) ) ) |
10 |
9
|
ralbidv |
|- ( c = C -> ( A. d e. ~P A d ~<_ ( c " d ) <-> A. d e. ~P A d ~<_ ( C " d ) ) ) |
11 |
|
pweq |
|- ( c = C -> ~P c = ~P C ) |
12 |
11
|
rexeqdv |
|- ( c = C -> ( E. f e. ~P c f : A -1-1-> _V <-> E. f e. ~P C f : A -1-1-> _V ) ) |
13 |
10 12
|
imbi12d |
|- ( c = C -> ( ( A. d e. ~P A d ~<_ ( c " d ) -> E. f e. ~P c f : A -1-1-> _V ) <-> ( A. d e. ~P A d ~<_ ( C " d ) -> E. f e. ~P C f : A -1-1-> _V ) ) ) |
14 |
|
xpeq2 |
|- ( b = B -> ( A X. b ) = ( A X. B ) ) |
15 |
14
|
pweqd |
|- ( b = B -> ~P ( A X. b ) = ~P ( A X. B ) ) |
16 |
15
|
raleqdv |
|- ( b = B -> ( A. c e. ~P ( A X. b ) ( A. d e. ~P A d ~<_ ( c " d ) -> E. f e. ~P c f : A -1-1-> _V ) <-> A. c e. ~P ( A X. B ) ( A. d e. ~P A d ~<_ ( c " d ) -> E. f e. ~P c f : A -1-1-> _V ) ) ) |
17 |
16
|
imbi2d |
|- ( b = B -> ( ( A e. Fin -> A. c e. ~P ( A X. b ) ( A. d e. ~P A d ~<_ ( c " d ) -> E. f e. ~P c f : A -1-1-> _V ) ) <-> ( A e. Fin -> A. c e. ~P ( A X. B ) ( A. d e. ~P A d ~<_ ( c " d ) -> E. f e. ~P c f : A -1-1-> _V ) ) ) ) |
18 |
|
marypha1lem |
|- ( A e. Fin -> ( b e. Fin -> A. c e. ~P ( A X. b ) ( A. d e. ~P A d ~<_ ( c " d ) -> E. f e. ~P c f : A -1-1-> _V ) ) ) |
19 |
18
|
com12 |
|- ( b e. Fin -> ( A e. Fin -> A. c e. ~P ( A X. b ) ( A. d e. ~P A d ~<_ ( c " d ) -> E. f e. ~P c f : A -1-1-> _V ) ) ) |
20 |
17 19
|
vtoclga |
|- ( B e. Fin -> ( A e. Fin -> A. c e. ~P ( A X. B ) ( A. d e. ~P A d ~<_ ( c " d ) -> E. f e. ~P c f : A -1-1-> _V ) ) ) |
21 |
2 1 20
|
sylc |
|- ( ph -> A. c e. ~P ( A X. B ) ( A. d e. ~P A d ~<_ ( c " d ) -> E. f e. ~P c f : A -1-1-> _V ) ) |
22 |
1 2
|
xpexd |
|- ( ph -> ( A X. B ) e. _V ) |
23 |
22 3
|
sselpwd |
|- ( ph -> C e. ~P ( A X. B ) ) |
24 |
13 21 23
|
rspcdva |
|- ( ph -> ( A. d e. ~P A d ~<_ ( C " d ) -> E. f e. ~P C f : A -1-1-> _V ) ) |
25 |
7 24
|
mpd |
|- ( ph -> E. f e. ~P C f : A -1-1-> _V ) |
26 |
|
elpwi |
|- ( f e. ~P C -> f C_ C ) |
27 |
26 3
|
sylan9ssr |
|- ( ( ph /\ f e. ~P C ) -> f C_ ( A X. B ) ) |
28 |
|
rnss |
|- ( f C_ ( A X. B ) -> ran f C_ ran ( A X. B ) ) |
29 |
27 28
|
syl |
|- ( ( ph /\ f e. ~P C ) -> ran f C_ ran ( A X. B ) ) |
30 |
|
rnxpss |
|- ran ( A X. B ) C_ B |
31 |
29 30
|
sstrdi |
|- ( ( ph /\ f e. ~P C ) -> ran f C_ B ) |
32 |
|
f1ssr |
|- ( ( f : A -1-1-> _V /\ ran f C_ B ) -> f : A -1-1-> B ) |
33 |
32
|
expcom |
|- ( ran f C_ B -> ( f : A -1-1-> _V -> f : A -1-1-> B ) ) |
34 |
31 33
|
syl |
|- ( ( ph /\ f e. ~P C ) -> ( f : A -1-1-> _V -> f : A -1-1-> B ) ) |
35 |
34
|
reximdva |
|- ( ph -> ( E. f e. ~P C f : A -1-1-> _V -> E. f e. ~P C f : A -1-1-> B ) ) |
36 |
25 35
|
mpd |
|- ( ph -> E. f e. ~P C f : A -1-1-> B ) |