| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matbas.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | matbas.g |  |-  G = ( R freeLMod ( N X. N ) ) | 
						
							| 3 |  | eqidd |  |-  ( ( N e. Fin /\ R e. V ) -> ( Base ` G ) = ( Base ` G ) ) | 
						
							| 4 | 1 2 | matbas |  |-  ( ( N e. Fin /\ R e. V ) -> ( Base ` G ) = ( Base ` A ) ) | 
						
							| 5 | 1 2 | matplusg |  |-  ( ( N e. Fin /\ R e. V ) -> ( +g ` G ) = ( +g ` A ) ) | 
						
							| 6 | 5 | oveqdr |  |-  ( ( ( N e. Fin /\ R e. V ) /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` A ) y ) ) | 
						
							| 7 | 3 4 6 | grpidpropd |  |-  ( ( N e. Fin /\ R e. V ) -> ( 0g ` G ) = ( 0g ` A ) ) |