Step |
Hyp |
Ref |
Expression |
1 |
|
0xp |
|- ( (/) X. (/) ) = (/) |
2 |
1
|
a1i |
|- ( R e. V -> ( (/) X. (/) ) = (/) ) |
3 |
2
|
oveq2d |
|- ( R e. V -> ( ( Base ` R ) ^m ( (/) X. (/) ) ) = ( ( Base ` R ) ^m (/) ) ) |
4 |
|
fvex |
|- ( Base ` R ) e. _V |
5 |
|
map0e |
|- ( ( Base ` R ) e. _V -> ( ( Base ` R ) ^m (/) ) = 1o ) |
6 |
4 5
|
mp1i |
|- ( R e. V -> ( ( Base ` R ) ^m (/) ) = 1o ) |
7 |
3 6
|
eqtrd |
|- ( R e. V -> ( ( Base ` R ) ^m ( (/) X. (/) ) ) = 1o ) |
8 |
|
0fin |
|- (/) e. Fin |
9 |
|
eqid |
|- ( (/) Mat R ) = ( (/) Mat R ) |
10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
11 |
9 10
|
matbas2 |
|- ( ( (/) e. Fin /\ R e. V ) -> ( ( Base ` R ) ^m ( (/) X. (/) ) ) = ( Base ` ( (/) Mat R ) ) ) |
12 |
8 11
|
mpan |
|- ( R e. V -> ( ( Base ` R ) ^m ( (/) X. (/) ) ) = ( Base ` ( (/) Mat R ) ) ) |
13 |
|
df1o2 |
|- 1o = { (/) } |
14 |
13
|
a1i |
|- ( R e. V -> 1o = { (/) } ) |
15 |
7 12 14
|
3eqtr3d |
|- ( R e. V -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |