| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat0dim.a |
|- A = ( (/) Mat R ) |
| 2 |
|
simpl |
|- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> R e. Ring ) |
| 3 |
|
0fi |
|- (/) e. Fin |
| 4 |
1
|
matlmod |
|- ( ( (/) e. Fin /\ R e. Ring ) -> A e. LMod ) |
| 5 |
3 2 4
|
sylancr |
|- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> A e. LMod ) |
| 6 |
1
|
matsca2 |
|- ( ( (/) e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) |
| 7 |
3 6
|
mpan |
|- ( R e. Ring -> R = ( Scalar ` A ) ) |
| 8 |
7
|
fveq2d |
|- ( R e. Ring -> ( Base ` R ) = ( Base ` ( Scalar ` A ) ) ) |
| 9 |
8
|
eleq2d |
|- ( R e. Ring -> ( X e. ( Base ` R ) <-> X e. ( Base ` ( Scalar ` A ) ) ) ) |
| 10 |
9
|
biimpa |
|- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> X e. ( Base ` ( Scalar ` A ) ) ) |
| 11 |
|
0ex |
|- (/) e. _V |
| 12 |
11
|
snid |
|- (/) e. { (/) } |
| 13 |
1
|
fveq2i |
|- ( Base ` A ) = ( Base ` ( (/) Mat R ) ) |
| 14 |
|
mat0dimbas0 |
|- ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
| 15 |
13 14
|
eqtrid |
|- ( R e. Ring -> ( Base ` A ) = { (/) } ) |
| 16 |
12 15
|
eleqtrrid |
|- ( R e. Ring -> (/) e. ( Base ` A ) ) |
| 17 |
16
|
adantr |
|- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> (/) e. ( Base ` A ) ) |
| 18 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 19 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
| 20 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
| 21 |
|
eqid |
|- ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) |
| 22 |
18 19 20 21
|
lmodvscl |
|- ( ( A e. LMod /\ X e. ( Base ` ( Scalar ` A ) ) /\ (/) e. ( Base ` A ) ) -> ( X ( .s ` A ) (/) ) e. ( Base ` A ) ) |
| 23 |
5 10 17 22
|
syl3anc |
|- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> ( X ( .s ` A ) (/) ) e. ( Base ` A ) ) |
| 24 |
15
|
eleq2d |
|- ( R e. Ring -> ( ( X ( .s ` A ) (/) ) e. ( Base ` A ) <-> ( X ( .s ` A ) (/) ) e. { (/) } ) ) |
| 25 |
|
elsni |
|- ( ( X ( .s ` A ) (/) ) e. { (/) } -> ( X ( .s ` A ) (/) ) = (/) ) |
| 26 |
24 25
|
biimtrdi |
|- ( R e. Ring -> ( ( X ( .s ` A ) (/) ) e. ( Base ` A ) -> ( X ( .s ` A ) (/) ) = (/) ) ) |
| 27 |
2 23 26
|
sylc |
|- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> ( X ( .s ` A ) (/) ) = (/) ) |