Step |
Hyp |
Ref |
Expression |
1 |
|
mat0op.a |
|- A = ( N Mat R ) |
2 |
|
mat0op.z |
|- .0. = ( 0g ` R ) |
3 |
|
eqid |
|- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
4 |
1 3
|
mat0 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) |
5 |
|
fconstmpo |
|- ( ( N X. N ) X. { ( 0g ` R ) } ) = ( i e. N , j e. N |-> ( 0g ` R ) ) |
6 |
|
simpr |
|- ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) |
7 |
|
sqxpexg |
|- ( N e. Fin -> ( N X. N ) e. _V ) |
8 |
7
|
adantr |
|- ( ( N e. Fin /\ R e. Ring ) -> ( N X. N ) e. _V ) |
9 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
10 |
3 9
|
frlm0 |
|- ( ( R e. Ring /\ ( N X. N ) e. _V ) -> ( ( N X. N ) X. { ( 0g ` R ) } ) = ( 0g ` ( R freeLMod ( N X. N ) ) ) ) |
11 |
6 8 10
|
syl2anc |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( N X. N ) X. { ( 0g ` R ) } ) = ( 0g ` ( R freeLMod ( N X. N ) ) ) ) |
12 |
2
|
eqcomi |
|- ( 0g ` R ) = .0. |
13 |
12
|
a1i |
|- ( ( i e. N /\ j e. N ) -> ( 0g ` R ) = .0. ) |
14 |
13
|
mpoeq3ia |
|- ( i e. N , j e. N |-> ( 0g ` R ) ) = ( i e. N , j e. N |-> .0. ) |
15 |
14
|
a1i |
|- ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> ( 0g ` R ) ) = ( i e. N , j e. N |-> .0. ) ) |
16 |
5 11 15
|
3eqtr3a |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( i e. N , j e. N |-> .0. ) ) |
17 |
4 16
|
eqtr3d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( i e. N , j e. N |-> .0. ) ) |