| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat0op.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mat0op.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | eqid |  |-  ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) | 
						
							| 4 | 1 3 | mat0 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) | 
						
							| 5 |  | fconstmpo |  |-  ( ( N X. N ) X. { ( 0g ` R ) } ) = ( i e. N , j e. N |-> ( 0g ` R ) ) | 
						
							| 6 |  | simpr |  |-  ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) | 
						
							| 7 |  | sqxpexg |  |-  ( N e. Fin -> ( N X. N ) e. _V ) | 
						
							| 8 | 7 | adantr |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( N X. N ) e. _V ) | 
						
							| 9 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 10 | 3 9 | frlm0 |  |-  ( ( R e. Ring /\ ( N X. N ) e. _V ) -> ( ( N X. N ) X. { ( 0g ` R ) } ) = ( 0g ` ( R freeLMod ( N X. N ) ) ) ) | 
						
							| 11 | 6 8 10 | syl2anc |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( N X. N ) X. { ( 0g ` R ) } ) = ( 0g ` ( R freeLMod ( N X. N ) ) ) ) | 
						
							| 12 | 2 | eqcomi |  |-  ( 0g ` R ) = .0. | 
						
							| 13 | 12 | a1i |  |-  ( ( i e. N /\ j e. N ) -> ( 0g ` R ) = .0. ) | 
						
							| 14 | 13 | mpoeq3ia |  |-  ( i e. N , j e. N |-> ( 0g ` R ) ) = ( i e. N , j e. N |-> .0. ) | 
						
							| 15 | 14 | a1i |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> ( 0g ` R ) ) = ( i e. N , j e. N |-> .0. ) ) | 
						
							| 16 | 5 11 15 | 3eqtr3a |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( i e. N , j e. N |-> .0. ) ) | 
						
							| 17 | 4 16 | eqtr3d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( i e. N , j e. N |-> .0. ) ) |