Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
1
|
snid |
|- (/) e. { (/) } |
3 |
|
mat0dimbas0 |
|- ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
4 |
2 3
|
eleqtrrid |
|- ( R e. Ring -> (/) e. ( Base ` ( (/) Mat R ) ) ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
7 |
5 6
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
8 |
|
oveq1 |
|- ( c = ( 1r ` R ) -> ( c ( .s ` ( (/) Mat R ) ) (/) ) = ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) ) |
9 |
8
|
eqeq2d |
|- ( c = ( 1r ` R ) -> ( (/) = ( c ( .s ` ( (/) Mat R ) ) (/) ) <-> (/) = ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) ) ) |
10 |
9
|
adantl |
|- ( ( R e. Ring /\ c = ( 1r ` R ) ) -> ( (/) = ( c ( .s ` ( (/) Mat R ) ) (/) ) <-> (/) = ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) ) ) |
11 |
|
eqid |
|- ( (/) Mat R ) = ( (/) Mat R ) |
12 |
11
|
mat0dimscm |
|- ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) = (/) ) |
13 |
7 12
|
mpdan |
|- ( R e. Ring -> ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) = (/) ) |
14 |
13
|
eqcomd |
|- ( R e. Ring -> (/) = ( ( 1r ` R ) ( .s ` ( (/) Mat R ) ) (/) ) ) |
15 |
7 10 14
|
rspcedvd |
|- ( R e. Ring -> E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) (/) ) ) |
16 |
11
|
mat0dimid |
|- ( R e. Ring -> ( 1r ` ( (/) Mat R ) ) = (/) ) |
17 |
16
|
oveq2d |
|- ( R e. Ring -> ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) = ( c ( .s ` ( (/) Mat R ) ) (/) ) ) |
18 |
17
|
eqeq2d |
|- ( R e. Ring -> ( (/) = ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) <-> (/) = ( c ( .s ` ( (/) Mat R ) ) (/) ) ) ) |
19 |
18
|
rexbidv |
|- ( R e. Ring -> ( E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) <-> E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) (/) ) ) ) |
20 |
15 19
|
mpbird |
|- ( R e. Ring -> E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) ) |
21 |
|
0fin |
|- (/) e. Fin |
22 |
|
eqid |
|- ( Base ` ( (/) Mat R ) ) = ( Base ` ( (/) Mat R ) ) |
23 |
|
eqid |
|- ( 1r ` ( (/) Mat R ) ) = ( 1r ` ( (/) Mat R ) ) |
24 |
|
eqid |
|- ( .s ` ( (/) Mat R ) ) = ( .s ` ( (/) Mat R ) ) |
25 |
|
eqid |
|- ( (/) ScMat R ) = ( (/) ScMat R ) |
26 |
5 11 22 23 24 25
|
scmatel |
|- ( ( (/) e. Fin /\ R e. Ring ) -> ( (/) e. ( (/) ScMat R ) <-> ( (/) e. ( Base ` ( (/) Mat R ) ) /\ E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) ) ) ) |
27 |
21 26
|
mpan |
|- ( R e. Ring -> ( (/) e. ( (/) ScMat R ) <-> ( (/) e. ( Base ` ( (/) Mat R ) ) /\ E. c e. ( Base ` R ) (/) = ( c ( .s ` ( (/) Mat R ) ) ( 1r ` ( (/) Mat R ) ) ) ) ) ) |
28 |
4 20 27
|
mpbir2and |
|- ( R e. Ring -> (/) e. ( (/) ScMat R ) ) |