Step |
Hyp |
Ref |
Expression |
1 |
|
mat1.a |
|- A = ( N Mat R ) |
2 |
|
mat1.o |
|- .1. = ( 1r ` R ) |
3 |
|
mat1.z |
|- .0. = ( 0g ` R ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
|
simpr |
|- ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) |
6 |
|
eqid |
|- ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) |
7 |
|
simpl |
|- ( ( N e. Fin /\ R e. Ring ) -> N e. Fin ) |
8 |
4 5 2 3 6 7
|
mamumat1cl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
9 |
1 4
|
matbas2 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
10 |
8 9
|
eleqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( Base ` A ) ) |
11 |
|
eqid |
|- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
12 |
1 11
|
matmulr |
|- ( ( N e. Fin /\ R e. Ring ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
13 |
12
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
14 |
13
|
oveqd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( R maMul <. N , N , N >. ) x ) = ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) ) |
15 |
|
simplr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> R e. Ring ) |
16 |
|
simpll |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> N e. Fin ) |
17 |
9
|
eleq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( x e. ( ( Base ` R ) ^m ( N X. N ) ) <-> x e. ( Base ` A ) ) ) |
18 |
17
|
biimpar |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> x e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
19 |
4 15 2 3 6 16 16 11 18
|
mamulid |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( R maMul <. N , N , N >. ) x ) = x ) |
20 |
14 19
|
eqtr3d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x ) |
21 |
13
|
oveqd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( x ( R maMul <. N , N , N >. ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) ) |
22 |
4 15 2 3 6 16 16 11 18
|
mamurid |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( x ( R maMul <. N , N , N >. ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) |
23 |
21 22
|
eqtr3d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) |
24 |
20 23
|
jca |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) |
25 |
24
|
ralrimiva |
|- ( ( N e. Fin /\ R e. Ring ) -> A. x e. ( Base ` A ) ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) |
26 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
27 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
28 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
29 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
30 |
27 28 29
|
isringid |
|- ( A e. Ring -> ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( Base ` A ) /\ A. x e. ( Base ` A ) ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) <-> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) ) |
31 |
26 30
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( Base ` A ) /\ A. x e. ( Base ` A ) ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) <-> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) ) |
32 |
10 25 31
|
mpbi2and |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |