| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mat1.o |  |-  .1. = ( 1r ` R ) | 
						
							| 3 |  | mat1.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 |  | simpr |  |-  ( ( N e. Fin /\ R e. Ring ) -> R e. Ring ) | 
						
							| 6 |  | eqid |  |-  ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) | 
						
							| 7 |  | simpl |  |-  ( ( N e. Fin /\ R e. Ring ) -> N e. Fin ) | 
						
							| 8 | 4 5 2 3 6 7 | mamumat1cl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 9 | 1 4 | matbas2 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) | 
						
							| 10 | 8 9 | eleqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( Base ` A ) ) | 
						
							| 11 |  | eqid |  |-  ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) | 
						
							| 12 | 1 11 | matmulr |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) | 
						
							| 14 | 13 | oveqd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( R maMul <. N , N , N >. ) x ) = ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) ) | 
						
							| 15 |  | simplr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> R e. Ring ) | 
						
							| 16 |  | simpll |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> N e. Fin ) | 
						
							| 17 | 9 | eleq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( x e. ( ( Base ` R ) ^m ( N X. N ) ) <-> x e. ( Base ` A ) ) ) | 
						
							| 18 | 17 | biimpar |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> x e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 19 | 4 15 2 3 6 16 16 11 18 | mamulid |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( R maMul <. N , N , N >. ) x ) = x ) | 
						
							| 20 | 14 19 | eqtr3d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x ) | 
						
							| 21 | 13 | oveqd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( x ( R maMul <. N , N , N >. ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) ) | 
						
							| 22 | 4 15 2 3 6 16 16 11 18 | mamurid |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( x ( R maMul <. N , N , N >. ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) | 
						
							| 23 | 21 22 | eqtr3d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) | 
						
							| 24 | 20 23 | jca |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ x e. ( Base ` A ) ) -> ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) | 
						
							| 25 | 24 | ralrimiva |  |-  ( ( N e. Fin /\ R e. Ring ) -> A. x e. ( Base ` A ) ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) | 
						
							| 26 | 1 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 27 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 28 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 29 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 30 | 27 28 29 | isringid |  |-  ( A e. Ring -> ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( Base ` A ) /\ A. x e. ( Base ` A ) ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) <-> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) ) | 
						
							| 31 | 26 30 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) e. ( Base ` A ) /\ A. x e. ( Base ` A ) ( ( ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ( .r ` A ) x ) = x /\ ( x ( .r ` A ) ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) = x ) ) <-> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) ) | 
						
							| 32 | 10 25 31 | mpbi2and |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |