| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1bas.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mat1bas.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | mat1bas.i |  |-  .1. = ( 1r ` ( N Mat R ) ) | 
						
							| 4 |  | eqid |  |-  ( N Mat R ) = ( N Mat R ) | 
						
							| 5 | 4 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( N Mat R ) e. Ring ) | 
						
							| 6 | 5 | ancoms |  |-  ( ( R e. Ring /\ N e. Fin ) -> ( N Mat R ) e. Ring ) | 
						
							| 7 | 1 | fveq2i |  |-  ( Base ` A ) = ( Base ` ( N Mat R ) ) | 
						
							| 8 | 2 7 | eqtri |  |-  B = ( Base ` ( N Mat R ) ) | 
						
							| 9 | 8 3 | ringidcl |  |-  ( ( N Mat R ) e. Ring -> .1. e. B ) | 
						
							| 10 | 6 9 | syl |  |-  ( ( R e. Ring /\ N e. Fin ) -> .1. e. B ) |