Step |
Hyp |
Ref |
Expression |
1 |
|
mamumat1cl.b |
|- B = ( Base ` R ) |
2 |
|
mamumat1cl.r |
|- ( ph -> R e. Ring ) |
3 |
|
mamumat1cl.o |
|- .1. = ( 1r ` R ) |
4 |
|
mamumat1cl.z |
|- .0. = ( 0g ` R ) |
5 |
|
mamumat1cl.i |
|- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
6 |
|
mamumat1cl.m |
|- ( ph -> M e. Fin ) |
7 |
|
eqeq1 |
|- ( i = A -> ( i = j <-> A = j ) ) |
8 |
7
|
ifbid |
|- ( i = A -> if ( i = j , .1. , .0. ) = if ( A = j , .1. , .0. ) ) |
9 |
|
eqeq2 |
|- ( j = J -> ( A = j <-> A = J ) ) |
10 |
9
|
ifbid |
|- ( j = J -> if ( A = j , .1. , .0. ) = if ( A = J , .1. , .0. ) ) |
11 |
3
|
fvexi |
|- .1. e. _V |
12 |
4
|
fvexi |
|- .0. e. _V |
13 |
11 12
|
ifex |
|- if ( A = J , .1. , .0. ) e. _V |
14 |
8 10 5 13
|
ovmpo |
|- ( ( A e. M /\ J e. M ) -> ( A I J ) = if ( A = J , .1. , .0. ) ) |