| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamumat1cl.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | mamumat1cl.r |  |-  ( ph -> R e. Ring ) | 
						
							| 3 |  | mamumat1cl.o |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | mamumat1cl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | mamumat1cl.i |  |-  I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) | 
						
							| 6 |  | mamumat1cl.m |  |-  ( ph -> M e. Fin ) | 
						
							| 7 |  | eqeq1 |  |-  ( i = A -> ( i = j <-> A = j ) ) | 
						
							| 8 | 7 | ifbid |  |-  ( i = A -> if ( i = j , .1. , .0. ) = if ( A = j , .1. , .0. ) ) | 
						
							| 9 |  | eqeq2 |  |-  ( j = J -> ( A = j <-> A = J ) ) | 
						
							| 10 | 9 | ifbid |  |-  ( j = J -> if ( A = j , .1. , .0. ) = if ( A = J , .1. , .0. ) ) | 
						
							| 11 | 3 | fvexi |  |-  .1. e. _V | 
						
							| 12 | 4 | fvexi |  |-  .0. e. _V | 
						
							| 13 | 11 12 | ifex |  |-  if ( A = J , .1. , .0. ) e. _V | 
						
							| 14 | 8 10 5 13 | ovmpo |  |-  ( ( A e. M /\ J e. M ) -> ( A I J ) = if ( A = J , .1. , .0. ) ) |