| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mamumat1cl.b | 
							 |-  B = ( Base ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							mamumat1cl.r | 
							 |-  ( ph -> R e. Ring )  | 
						
						
							| 3 | 
							
								
							 | 
							mamumat1cl.o | 
							 |-  .1. = ( 1r ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							mamumat1cl.z | 
							 |-  .0. = ( 0g ` R )  | 
						
						
							| 5 | 
							
								
							 | 
							mamumat1cl.i | 
							 |-  I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) )  | 
						
						
							| 6 | 
							
								
							 | 
							mamumat1cl.m | 
							 |-  ( ph -> M e. Fin )  | 
						
						
							| 7 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( i = A -> ( i = j <-> A = j ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ifbid | 
							 |-  ( i = A -> if ( i = j , .1. , .0. ) = if ( A = j , .1. , .0. ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( j = J -> ( A = j <-> A = J ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ifbid | 
							 |-  ( j = J -> if ( A = j , .1. , .0. ) = if ( A = J , .1. , .0. ) )  | 
						
						
							| 11 | 
							
								3
							 | 
							fvexi | 
							 |-  .1. e. _V  | 
						
						
							| 12 | 
							
								4
							 | 
							fvexi | 
							 |-  .0. e. _V  | 
						
						
							| 13 | 
							
								11 12
							 | 
							ifex | 
							 |-  if ( A = J , .1. , .0. ) e. _V  | 
						
						
							| 14 | 
							
								8 10 5 13
							 | 
							ovmpo | 
							 |-  ( ( A e. M /\ J e. M ) -> ( A I J ) = if ( A = J , .1. , .0. ) )  |