| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat1dim.a |
|- A = ( { E } Mat R ) |
| 2 |
|
mat1dim.b |
|- B = ( Base ` R ) |
| 3 |
|
mat1dim.o |
|- O = <. E , E >. |
| 4 |
|
snfi |
|- { E } e. Fin |
| 5 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 6 |
5
|
adantr |
|- ( ( R e. CRing /\ E e. V ) -> R e. Ring ) |
| 7 |
1
|
matring |
|- ( ( { E } e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 8 |
4 6 7
|
sylancr |
|- ( ( R e. CRing /\ E e. V ) -> A e. Ring ) |
| 9 |
1 2 3
|
mat1dimelbas |
|- ( ( R e. Ring /\ E e. V ) -> ( x e. ( Base ` A ) <-> E. a e. B x = { <. O , a >. } ) ) |
| 10 |
1 2 3
|
mat1dimelbas |
|- ( ( R e. Ring /\ E e. V ) -> ( y e. ( Base ` A ) <-> E. b e. B y = { <. O , b >. } ) ) |
| 11 |
9 10
|
anbi12d |
|- ( ( R e. Ring /\ E e. V ) -> ( ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) <-> ( E. a e. B x = { <. O , a >. } /\ E. b e. B y = { <. O , b >. } ) ) ) |
| 12 |
5 11
|
sylan |
|- ( ( R e. CRing /\ E e. V ) -> ( ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) <-> ( E. a e. B x = { <. O , a >. } /\ E. b e. B y = { <. O , b >. } ) ) ) |
| 13 |
|
simpll |
|- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> R e. CRing ) |
| 14 |
|
simprl |
|- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
| 15 |
|
simprr |
|- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
| 16 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 17 |
2 16
|
crngcom |
|- ( ( R e. CRing /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) |
| 18 |
13 14 15 17
|
syl3anc |
|- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) |
| 19 |
18
|
opeq2d |
|- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> <. O , ( a ( .r ` R ) b ) >. = <. O , ( b ( .r ` R ) a ) >. ) |
| 20 |
19
|
sneqd |
|- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> { <. O , ( a ( .r ` R ) b ) >. } = { <. O , ( b ( .r ` R ) a ) >. } ) |
| 21 |
5
|
anim1i |
|- ( ( R e. CRing /\ E e. V ) -> ( R e. Ring /\ E e. V ) ) |
| 22 |
1 2 3
|
mat1dimmul |
|- ( ( ( R e. Ring /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = { <. O , ( a ( .r ` R ) b ) >. } ) |
| 23 |
21 22
|
sylan |
|- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = { <. O , ( a ( .r ` R ) b ) >. } ) |
| 24 |
|
pm3.22 |
|- ( ( a e. B /\ b e. B ) -> ( b e. B /\ a e. B ) ) |
| 25 |
1 2 3
|
mat1dimmul |
|- ( ( ( R e. Ring /\ E e. V ) /\ ( b e. B /\ a e. B ) ) -> ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) = { <. O , ( b ( .r ` R ) a ) >. } ) |
| 26 |
21 24 25
|
syl2an |
|- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) = { <. O , ( b ( .r ` R ) a ) >. } ) |
| 27 |
20 23 26
|
3eqtr4d |
|- ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) |
| 28 |
27
|
expr |
|- ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) -> ( b e. B -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) -> ( b e. B -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) |
| 30 |
29
|
imp |
|- ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) |
| 31 |
30
|
adantr |
|- ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) |
| 32 |
|
oveq12 |
|- ( ( x = { <. O , a >. } /\ y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) ) |
| 33 |
32
|
ad4ant24 |
|- ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) ) |
| 34 |
|
oveq12 |
|- ( ( y = { <. O , b >. } /\ x = { <. O , a >. } ) -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) |
| 35 |
34
|
expcom |
|- ( x = { <. O , a >. } -> ( y = { <. O , b >. } -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) |
| 36 |
35
|
ad2antlr |
|- ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) -> ( y = { <. O , b >. } -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) |
| 37 |
36
|
imp |
|- ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) |
| 38 |
31 33 37
|
3eqtr4d |
|- ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) |
| 39 |
38
|
rexlimdva2 |
|- ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) -> ( E. b e. B y = { <. O , b >. } -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 40 |
39
|
rexlimdva2 |
|- ( ( R e. CRing /\ E e. V ) -> ( E. a e. B x = { <. O , a >. } -> ( E. b e. B y = { <. O , b >. } -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) ) |
| 41 |
40
|
impd |
|- ( ( R e. CRing /\ E e. V ) -> ( ( E. a e. B x = { <. O , a >. } /\ E. b e. B y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 42 |
12 41
|
sylbid |
|- ( ( R e. CRing /\ E e. V ) -> ( ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 43 |
42
|
ralrimivv |
|- ( ( R e. CRing /\ E e. V ) -> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) |
| 44 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 45 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
| 46 |
44 45
|
iscrng2 |
|- ( A e. CRing <-> ( A e. Ring /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 47 |
8 43 46
|
sylanbrc |
|- ( ( R e. CRing /\ E e. V ) -> A e. CRing ) |