Description: There is a function from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | |- K = ( Base ` R ) |
|
| mat1rhmval.a | |- A = ( { E } Mat R ) |
||
| mat1rhmval.b | |- B = ( Base ` A ) |
||
| mat1rhmval.o | |- O = <. E , E >. |
||
| mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
||
| Assertion | mat1f | |- ( ( R e. Ring /\ E e. V ) -> F : K --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | |- K = ( Base ` R ) |
|
| 2 | mat1rhmval.a | |- A = ( { E } Mat R ) |
|
| 3 | mat1rhmval.b | |- B = ( Base ` A ) |
|
| 4 | mat1rhmval.o | |- O = <. E , E >. |
|
| 5 | mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
|
| 6 | 1 2 3 4 5 | mat1f1o | |- ( ( R e. Ring /\ E e. V ) -> F : K -1-1-onto-> B ) |
| 7 | f1of | |- ( F : K -1-1-onto-> B -> F : K --> B ) |
|
| 8 | 6 7 | syl | |- ( ( R e. Ring /\ E e. V ) -> F : K --> B ) |