Step |
Hyp |
Ref |
Expression |
1 |
|
mat1.a |
|- A = ( N Mat R ) |
2 |
|
mat1.o |
|- .1. = ( 1r ` R ) |
3 |
|
mat1.z |
|- .0. = ( 0g ` R ) |
4 |
|
mat1ov.n |
|- ( ph -> N e. Fin ) |
5 |
|
mat1ov.r |
|- ( ph -> R e. Ring ) |
6 |
|
mat1ov.i |
|- ( ph -> I e. N ) |
7 |
|
mat1ov.j |
|- ( ph -> J e. N ) |
8 |
|
mat1ov.u |
|- U = ( 1r ` A ) |
9 |
1 2 3
|
mat1 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
10 |
4 5 9
|
syl2anc |
|- ( ph -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
11 |
8 10
|
eqtrid |
|- ( ph -> U = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
12 |
|
eqeq12 |
|- ( ( i = I /\ j = J ) -> ( i = j <-> I = J ) ) |
13 |
12
|
ifbid |
|- ( ( i = I /\ j = J ) -> if ( i = j , .1. , .0. ) = if ( I = J , .1. , .0. ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> if ( i = j , .1. , .0. ) = if ( I = J , .1. , .0. ) ) |
15 |
2
|
fvexi |
|- .1. e. _V |
16 |
3
|
fvexi |
|- .0. e. _V |
17 |
15 16
|
ifex |
|- if ( I = J , .1. , .0. ) e. _V |
18 |
17
|
a1i |
|- ( ph -> if ( I = J , .1. , .0. ) e. _V ) |
19 |
11 14 6 7 18
|
ovmpod |
|- ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) ) |