| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mat1.o |  |-  .1. = ( 1r ` R ) | 
						
							| 3 |  | mat1.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | mat1ov.n |  |-  ( ph -> N e. Fin ) | 
						
							| 5 |  | mat1ov.r |  |-  ( ph -> R e. Ring ) | 
						
							| 6 |  | mat1ov.i |  |-  ( ph -> I e. N ) | 
						
							| 7 |  | mat1ov.j |  |-  ( ph -> J e. N ) | 
						
							| 8 |  | mat1ov.u |  |-  U = ( 1r ` A ) | 
						
							| 9 | 1 2 3 | mat1 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) | 
						
							| 10 | 4 5 9 | syl2anc |  |-  ( ph -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) | 
						
							| 11 | 8 10 | eqtrid |  |-  ( ph -> U = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) | 
						
							| 12 |  | eqeq12 |  |-  ( ( i = I /\ j = J ) -> ( i = j <-> I = J ) ) | 
						
							| 13 | 12 | ifbid |  |-  ( ( i = I /\ j = J ) -> if ( i = j , .1. , .0. ) = if ( I = J , .1. , .0. ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ ( i = I /\ j = J ) ) -> if ( i = j , .1. , .0. ) = if ( I = J , .1. , .0. ) ) | 
						
							| 15 | 2 | fvexi |  |-  .1. e. _V | 
						
							| 16 | 3 | fvexi |  |-  .0. e. _V | 
						
							| 17 | 15 16 | ifex |  |-  if ( I = J , .1. , .0. ) e. _V | 
						
							| 18 | 17 | a1i |  |-  ( ph -> if ( I = J , .1. , .0. ) e. _V ) | 
						
							| 19 | 11 14 6 7 18 | ovmpod |  |-  ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) ) |