Step |
Hyp |
Ref |
Expression |
1 |
|
mat1rhmval.k |
|- K = ( Base ` R ) |
2 |
|
mat1rhmval.a |
|- A = ( { E } Mat R ) |
3 |
|
mat1rhmval.b |
|- B = ( Base ` A ) |
4 |
|
mat1rhmval.o |
|- O = <. E , E >. |
5 |
|
mat1rhmval.f |
|- F = ( x e. K |-> { <. O , x >. } ) |
6 |
|
simpl |
|- ( ( R e. Ring /\ E e. V ) -> R e. Ring ) |
7 |
|
snfi |
|- { E } e. Fin |
8 |
2
|
matring |
|- ( ( { E } e. Fin /\ R e. Ring ) -> A e. Ring ) |
9 |
7 6 8
|
sylancr |
|- ( ( R e. Ring /\ E e. V ) -> A e. Ring ) |
10 |
1 2 3 4 5
|
mat1ghm |
|- ( ( R e. Ring /\ E e. V ) -> F e. ( R GrpHom A ) ) |
11 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
12 |
|
eqid |
|- ( mulGrp ` A ) = ( mulGrp ` A ) |
13 |
1 2 3 4 5 11 12
|
mat1mhm |
|- ( ( R e. Ring /\ E e. V ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` A ) ) ) |
14 |
10 13
|
jca |
|- ( ( R e. Ring /\ E e. V ) -> ( F e. ( R GrpHom A ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` A ) ) ) ) |
15 |
11 12
|
isrhm |
|- ( F e. ( R RingHom A ) <-> ( ( R e. Ring /\ A e. Ring ) /\ ( F e. ( R GrpHom A ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` A ) ) ) ) ) |
16 |
6 9 14 15
|
syl21anbrc |
|- ( ( R e. Ring /\ E e. V ) -> F e. ( R RingHom A ) ) |