Step |
Hyp |
Ref |
Expression |
1 |
|
mat1rhmval.k |
|- K = ( Base ` R ) |
2 |
|
mat1rhmval.a |
|- A = ( { E } Mat R ) |
3 |
|
mat1rhmval.b |
|- B = ( Base ` A ) |
4 |
|
mat1rhmval.o |
|- O = <. E , E >. |
5 |
|
mat1rhmval.f |
|- F = ( x e. K |-> { <. O , x >. } ) |
6 |
|
opeq2 |
|- ( x = X -> <. O , x >. = <. O , X >. ) |
7 |
6
|
sneqd |
|- ( x = X -> { <. O , x >. } = { <. O , X >. } ) |
8 |
|
simp3 |
|- ( ( R e. Ring /\ E e. V /\ X e. K ) -> X e. K ) |
9 |
|
snex |
|- { <. O , X >. } e. _V |
10 |
9
|
a1i |
|- ( ( R e. Ring /\ E e. V /\ X e. K ) -> { <. O , X >. } e. _V ) |
11 |
5 7 8 10
|
fvmptd3 |
|- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( F ` X ) = { <. O , X >. } ) |