Step |
Hyp |
Ref |
Expression |
1 |
|
mat1ric.a |
|- A = ( { E } Mat R ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
4 |
|
eqid |
|- <. E , E >. = <. E , E >. |
5 |
|
opeq2 |
|- ( x = y -> <. <. E , E >. , x >. = <. <. E , E >. , y >. ) |
6 |
5
|
sneqd |
|- ( x = y -> { <. <. E , E >. , x >. } = { <. <. E , E >. , y >. } ) |
7 |
6
|
cbvmptv |
|- ( x e. ( Base ` R ) |-> { <. <. E , E >. , x >. } ) = ( y e. ( Base ` R ) |-> { <. <. E , E >. , y >. } ) |
8 |
2 1 3 4 7
|
mat1rngiso |
|- ( ( R e. Ring /\ E e. V ) -> ( x e. ( Base ` R ) |-> { <. <. E , E >. , x >. } ) e. ( R RingIso A ) ) |
9 |
8
|
ne0d |
|- ( ( R e. Ring /\ E e. V ) -> ( R RingIso A ) =/= (/) ) |
10 |
|
brric |
|- ( R ~=r A <-> ( R RingIso A ) =/= (/) ) |
11 |
9 10
|
sylibr |
|- ( ( R e. Ring /\ E e. V ) -> R ~=r A ) |