Step |
Hyp |
Ref |
Expression |
1 |
|
mat1rhmval.k |
|- K = ( Base ` R ) |
2 |
|
mat1rhmval.a |
|- A = ( { E } Mat R ) |
3 |
|
mat1rhmval.b |
|- B = ( Base ` A ) |
4 |
|
mat1rhmval.o |
|- O = <. E , E >. |
5 |
|
mat1rhmval.f |
|- F = ( x e. K |-> { <. O , x >. } ) |
6 |
1 2 3 4 5
|
mat1rhm |
|- ( ( R e. Ring /\ E e. V ) -> F e. ( R RingHom A ) ) |
7 |
1 2 3 4 5
|
mat1f1o |
|- ( ( R e. Ring /\ E e. V ) -> F : K -1-1-onto-> B ) |
8 |
|
snfi |
|- { E } e. Fin |
9 |
|
simpl |
|- ( ( R e. Ring /\ E e. V ) -> R e. Ring ) |
10 |
2
|
matring |
|- ( ( { E } e. Fin /\ R e. Ring ) -> A e. Ring ) |
11 |
8 9 10
|
sylancr |
|- ( ( R e. Ring /\ E e. V ) -> A e. Ring ) |
12 |
1 3
|
isrim |
|- ( ( R e. Ring /\ A e. Ring ) -> ( F e. ( R RingIso A ) <-> ( F e. ( R RingHom A ) /\ F : K -1-1-onto-> B ) ) ) |
13 |
11 12
|
syldan |
|- ( ( R e. Ring /\ E e. V ) -> ( F e. ( R RingIso A ) <-> ( F e. ( R RingHom A ) /\ F : K -1-1-onto-> B ) ) ) |
14 |
6 7 13
|
mpbir2and |
|- ( ( R e. Ring /\ E e. V ) -> F e. ( R RingIso A ) ) |