| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat1scmat.a |
|- A = ( N Mat R ) |
| 2 |
|
mat1scmat.b |
|- B = ( Base ` A ) |
| 3 |
|
hash1snb |
|- ( N e. V -> ( ( # ` N ) = 1 <-> E. e N = { e } ) ) |
| 4 |
|
simpr |
|- ( ( R e. Ring /\ M e. ( Base ` ( { e } Mat R ) ) ) -> M e. ( Base ` ( { e } Mat R ) ) ) |
| 5 |
|
eqid |
|- ( { e } Mat R ) = ( { e } Mat R ) |
| 6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 7 |
|
eqid |
|- <. e , e >. = <. e , e >. |
| 8 |
5 6 7
|
mat1dimelbas |
|- ( ( R e. Ring /\ e e. _V ) -> ( M e. ( Base ` ( { e } Mat R ) ) <-> E. c e. ( Base ` R ) M = { <. <. e , e >. , c >. } ) ) |
| 9 |
8
|
elvd |
|- ( R e. Ring -> ( M e. ( Base ` ( { e } Mat R ) ) <-> E. c e. ( Base ` R ) M = { <. <. e , e >. , c >. } ) ) |
| 10 |
|
simpr |
|- ( ( ( R e. Ring /\ c e. ( Base ` R ) ) /\ M = { <. <. e , e >. , c >. } ) -> M = { <. <. e , e >. , c >. } ) |
| 11 |
|
vex |
|- e e. _V |
| 12 |
11
|
a1i |
|- ( c e. ( Base ` R ) -> e e. _V ) |
| 13 |
5 6 7
|
mat1dimid |
|- ( ( R e. Ring /\ e e. _V ) -> ( 1r ` ( { e } Mat R ) ) = { <. <. e , e >. , ( 1r ` R ) >. } ) |
| 14 |
12 13
|
sylan2 |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( 1r ` ( { e } Mat R ) ) = { <. <. e , e >. , ( 1r ` R ) >. } ) |
| 15 |
14
|
oveq2d |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) = ( c ( .s ` ( { e } Mat R ) ) { <. <. e , e >. , ( 1r ` R ) >. } ) ) |
| 16 |
|
simpl |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> R e. Ring ) |
| 17 |
16 11
|
jctir |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( R e. Ring /\ e e. _V ) ) |
| 18 |
|
simpr |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> c e. ( Base ` R ) ) |
| 19 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 20 |
6 19
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 21 |
20
|
adantr |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 22 |
5 6 7
|
mat1dimscm |
|- ( ( ( R e. Ring /\ e e. _V ) /\ ( c e. ( Base ` R ) /\ ( 1r ` R ) e. ( Base ` R ) ) ) -> ( c ( .s ` ( { e } Mat R ) ) { <. <. e , e >. , ( 1r ` R ) >. } ) = { <. <. e , e >. , ( c ( .r ` R ) ( 1r ` R ) ) >. } ) |
| 23 |
17 18 21 22
|
syl12anc |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( c ( .s ` ( { e } Mat R ) ) { <. <. e , e >. , ( 1r ` R ) >. } ) = { <. <. e , e >. , ( c ( .r ` R ) ( 1r ` R ) ) >. } ) |
| 24 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 25 |
6 24 19
|
ringridm |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( c ( .r ` R ) ( 1r ` R ) ) = c ) |
| 26 |
25
|
opeq2d |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> <. <. e , e >. , ( c ( .r ` R ) ( 1r ` R ) ) >. = <. <. e , e >. , c >. ) |
| 27 |
26
|
sneqd |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> { <. <. e , e >. , ( c ( .r ` R ) ( 1r ` R ) ) >. } = { <. <. e , e >. , c >. } ) |
| 28 |
15 23 27
|
3eqtrrd |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> { <. <. e , e >. , c >. } = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ( R e. Ring /\ c e. ( Base ` R ) ) /\ M = { <. <. e , e >. , c >. } ) -> { <. <. e , e >. , c >. } = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) |
| 30 |
10 29
|
eqtrd |
|- ( ( ( R e. Ring /\ c e. ( Base ` R ) ) /\ M = { <. <. e , e >. , c >. } ) -> M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) |
| 31 |
30
|
ex |
|- ( ( R e. Ring /\ c e. ( Base ` R ) ) -> ( M = { <. <. e , e >. , c >. } -> M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) ) |
| 32 |
31
|
reximdva |
|- ( R e. Ring -> ( E. c e. ( Base ` R ) M = { <. <. e , e >. , c >. } -> E. c e. ( Base ` R ) M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) ) |
| 33 |
9 32
|
sylbid |
|- ( R e. Ring -> ( M e. ( Base ` ( { e } Mat R ) ) -> E. c e. ( Base ` R ) M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) ) |
| 34 |
33
|
imp |
|- ( ( R e. Ring /\ M e. ( Base ` ( { e } Mat R ) ) ) -> E. c e. ( Base ` R ) M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) |
| 35 |
|
snfi |
|- { e } e. Fin |
| 36 |
|
simpl |
|- ( ( R e. Ring /\ M e. ( Base ` ( { e } Mat R ) ) ) -> R e. Ring ) |
| 37 |
|
eqid |
|- ( Base ` ( { e } Mat R ) ) = ( Base ` ( { e } Mat R ) ) |
| 38 |
|
eqid |
|- ( 1r ` ( { e } Mat R ) ) = ( 1r ` ( { e } Mat R ) ) |
| 39 |
|
eqid |
|- ( .s ` ( { e } Mat R ) ) = ( .s ` ( { e } Mat R ) ) |
| 40 |
|
eqid |
|- ( { e } ScMat R ) = ( { e } ScMat R ) |
| 41 |
6 5 37 38 39 40
|
scmatel |
|- ( ( { e } e. Fin /\ R e. Ring ) -> ( M e. ( { e } ScMat R ) <-> ( M e. ( Base ` ( { e } Mat R ) ) /\ E. c e. ( Base ` R ) M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) ) ) |
| 42 |
35 36 41
|
sylancr |
|- ( ( R e. Ring /\ M e. ( Base ` ( { e } Mat R ) ) ) -> ( M e. ( { e } ScMat R ) <-> ( M e. ( Base ` ( { e } Mat R ) ) /\ E. c e. ( Base ` R ) M = ( c ( .s ` ( { e } Mat R ) ) ( 1r ` ( { e } Mat R ) ) ) ) ) ) |
| 43 |
4 34 42
|
mpbir2and |
|- ( ( R e. Ring /\ M e. ( Base ` ( { e } Mat R ) ) ) -> M e. ( { e } ScMat R ) ) |
| 44 |
43
|
ex |
|- ( R e. Ring -> ( M e. ( Base ` ( { e } Mat R ) ) -> M e. ( { e } ScMat R ) ) ) |
| 45 |
1
|
fveq2i |
|- ( Base ` A ) = ( Base ` ( N Mat R ) ) |
| 46 |
2 45
|
eqtri |
|- B = ( Base ` ( N Mat R ) ) |
| 47 |
|
fvoveq1 |
|- ( N = { e } -> ( Base ` ( N Mat R ) ) = ( Base ` ( { e } Mat R ) ) ) |
| 48 |
46 47
|
eqtrid |
|- ( N = { e } -> B = ( Base ` ( { e } Mat R ) ) ) |
| 49 |
48
|
eleq2d |
|- ( N = { e } -> ( M e. B <-> M e. ( Base ` ( { e } Mat R ) ) ) ) |
| 50 |
|
oveq1 |
|- ( N = { e } -> ( N ScMat R ) = ( { e } ScMat R ) ) |
| 51 |
50
|
eleq2d |
|- ( N = { e } -> ( M e. ( N ScMat R ) <-> M e. ( { e } ScMat R ) ) ) |
| 52 |
49 51
|
imbi12d |
|- ( N = { e } -> ( ( M e. B -> M e. ( N ScMat R ) ) <-> ( M e. ( Base ` ( { e } Mat R ) ) -> M e. ( { e } ScMat R ) ) ) ) |
| 53 |
44 52
|
imbitrrid |
|- ( N = { e } -> ( R e. Ring -> ( M e. B -> M e. ( N ScMat R ) ) ) ) |
| 54 |
53
|
exlimiv |
|- ( E. e N = { e } -> ( R e. Ring -> ( M e. B -> M e. ( N ScMat R ) ) ) ) |
| 55 |
3 54
|
biimtrdi |
|- ( N e. V -> ( ( # ` N ) = 1 -> ( R e. Ring -> ( M e. B -> M e. ( N ScMat R ) ) ) ) ) |
| 56 |
55
|
3imp |
|- ( ( N e. V /\ ( # ` N ) = 1 /\ R e. Ring ) -> ( M e. B -> M e. ( N ScMat R ) ) ) |