| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat2pmatbas.t |
|- T = ( N matToPolyMat R ) |
| 2 |
|
mat2pmatbas.a |
|- A = ( N Mat R ) |
| 3 |
|
mat2pmatbas.b |
|- B = ( Base ` A ) |
| 4 |
|
mat2pmatbas.p |
|- P = ( Poly1 ` R ) |
| 5 |
|
mat2pmatbas.c |
|- C = ( N Mat P ) |
| 6 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 7 |
1 2 3 4 6
|
mat2pmatval |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) = ( x e. N , y e. N |-> ( ( algSc ` P ) ` ( x M y ) ) ) ) |
| 8 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 9 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 10 |
|
simp1 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> N e. Fin ) |
| 11 |
4
|
fvexi |
|- P e. _V |
| 12 |
11
|
a1i |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> P e. _V ) |
| 13 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 14 |
4
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 15 |
14
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> P e. Ring ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> P e. Ring ) |
| 17 |
4
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 18 |
17
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> P e. LMod ) |
| 19 |
18
|
3ad2ant1 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> P e. LMod ) |
| 20 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 21 |
6 13 16 19 20 8
|
asclf |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> ( algSc ` P ) : ( Base ` ( Scalar ` P ) ) --> ( Base ` P ) ) |
| 22 |
4
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 23 |
22
|
fveq2d |
|- ( R e. Ring -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 24 |
23
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 25 |
24
|
3ad2ant1 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 26 |
25
|
feq2d |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> ( ( algSc ` P ) : ( Base ` R ) --> ( Base ` P ) <-> ( algSc ` P ) : ( Base ` ( Scalar ` P ) ) --> ( Base ` P ) ) ) |
| 27 |
21 26
|
mpbird |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> ( algSc ` P ) : ( Base ` R ) --> ( Base ` P ) ) |
| 28 |
|
simp2 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> x e. N ) |
| 29 |
|
simp3 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> y e. N ) |
| 30 |
3
|
eleq2i |
|- ( M e. B <-> M e. ( Base ` A ) ) |
| 31 |
30
|
biimpi |
|- ( M e. B -> M e. ( Base ` A ) ) |
| 32 |
31
|
3ad2ant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> M e. ( Base ` A ) ) |
| 33 |
32
|
3ad2ant1 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> M e. ( Base ` A ) ) |
| 34 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 35 |
2 34
|
matecl |
|- ( ( x e. N /\ y e. N /\ M e. ( Base ` A ) ) -> ( x M y ) e. ( Base ` R ) ) |
| 36 |
28 29 33 35
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> ( x M y ) e. ( Base ` R ) ) |
| 37 |
27 36
|
ffvelcdmd |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ x e. N /\ y e. N ) -> ( ( algSc ` P ) ` ( x M y ) ) e. ( Base ` P ) ) |
| 38 |
5 8 9 10 12 37
|
matbas2d |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( x e. N , y e. N |-> ( ( algSc ` P ) ` ( x M y ) ) ) e. ( Base ` C ) ) |
| 39 |
7 38
|
eqeltrd |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` C ) ) |