Description: The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 27-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mat2pmatbas.t | |- T = ( N matToPolyMat R ) |
|
mat2pmatbas.a | |- A = ( N Mat R ) |
||
mat2pmatbas.b | |- B = ( Base ` A ) |
||
mat2pmatbas.p | |- P = ( Poly1 ` R ) |
||
mat2pmatbas.c | |- C = ( N Mat P ) |
||
mat2pmatbas0.h | |- H = ( Base ` C ) |
||
Assertion | mat2pmatbas0 | |- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatbas.t | |- T = ( N matToPolyMat R ) |
|
2 | mat2pmatbas.a | |- A = ( N Mat R ) |
|
3 | mat2pmatbas.b | |- B = ( Base ` A ) |
|
4 | mat2pmatbas.p | |- P = ( Poly1 ` R ) |
|
5 | mat2pmatbas.c | |- C = ( N Mat P ) |
|
6 | mat2pmatbas0.h | |- H = ( Base ` C ) |
|
7 | 1 2 3 4 5 | mat2pmatbas | |- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` C ) ) |
8 | 7 6 | eleqtrrdi | |- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. H ) |