Metamath Proof Explorer


Theorem mat2pmatbas0

Description: The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 27-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t
|- T = ( N matToPolyMat R )
mat2pmatbas.a
|- A = ( N Mat R )
mat2pmatbas.b
|- B = ( Base ` A )
mat2pmatbas.p
|- P = ( Poly1 ` R )
mat2pmatbas.c
|- C = ( N Mat P )
mat2pmatbas0.h
|- H = ( Base ` C )
Assertion mat2pmatbas0
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. H )

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t
 |-  T = ( N matToPolyMat R )
2 mat2pmatbas.a
 |-  A = ( N Mat R )
3 mat2pmatbas.b
 |-  B = ( Base ` A )
4 mat2pmatbas.p
 |-  P = ( Poly1 ` R )
5 mat2pmatbas.c
 |-  C = ( N Mat P )
6 mat2pmatbas0.h
 |-  H = ( Base ` C )
7 1 2 3 4 5 mat2pmatbas
 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` C ) )
8 7 6 eleqtrrdi
 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. H )