Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatbas.t |
|- T = ( N matToPolyMat R ) |
2 |
|
mat2pmatbas.a |
|- A = ( N Mat R ) |
3 |
|
mat2pmatbas.b |
|- B = ( Base ` A ) |
4 |
|
mat2pmatbas.p |
|- P = ( Poly1 ` R ) |
5 |
|
mat2pmatbas.c |
|- C = ( N Mat P ) |
6 |
|
mat2pmatbas0.h |
|- H = ( Base ` C ) |
7 |
|
simpl |
|- ( ( N e. Fin /\ R e. Ring ) -> N e. Fin ) |
8 |
7 7
|
jca |
|- ( ( N e. Fin /\ R e. Ring ) -> ( N e. Fin /\ N e. Fin ) ) |
9 |
8
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( N e. Fin /\ N e. Fin ) ) |
10 |
|
mpoexga |
|- ( ( N e. Fin /\ N e. Fin ) -> ( x e. N , y e. N |-> ( ( algSc ` P ) ` ( x m y ) ) ) e. _V ) |
11 |
9 10
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( x e. N , y e. N |-> ( ( algSc ` P ) ` ( x m y ) ) ) e. _V ) |
12 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
13 |
1 2 3 4 12
|
mat2pmatfval |
|- ( ( N e. Fin /\ R e. Ring ) -> T = ( m e. B |-> ( x e. N , y e. N |-> ( ( algSc ` P ) ` ( x m y ) ) ) ) ) |
14 |
1 2 3 4 5 6
|
mat2pmatbas0 |
|- ( ( N e. Fin /\ R e. Ring /\ m e. B ) -> ( T ` m ) e. H ) |
15 |
14
|
3expa |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( T ` m ) e. H ) |
16 |
11 13 15
|
fmpt2d |
|- ( ( N e. Fin /\ R e. Ring ) -> T : B --> H ) |