Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatbas.t |
|- T = ( N matToPolyMat R ) |
2 |
|
mat2pmatbas.a |
|- A = ( N Mat R ) |
3 |
|
mat2pmatbas.b |
|- B = ( Base ` A ) |
4 |
|
mat2pmatbas.p |
|- P = ( Poly1 ` R ) |
5 |
|
mat2pmatbas.c |
|- C = ( N Mat P ) |
6 |
|
mat2pmatbas0.h |
|- H = ( Base ` C ) |
7 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
8 |
2
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
9 |
7 8
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) |
10 |
|
eqid |
|- ( mulGrp ` A ) = ( mulGrp ` A ) |
11 |
10
|
ringmgp |
|- ( A e. Ring -> ( mulGrp ` A ) e. Mnd ) |
12 |
9 11
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> ( mulGrp ` A ) e. Mnd ) |
13 |
4
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
14 |
7 13
|
syl |
|- ( R e. CRing -> P e. Ring ) |
15 |
5
|
matring |
|- ( ( N e. Fin /\ P e. Ring ) -> C e. Ring ) |
16 |
14 15
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> C e. Ring ) |
17 |
|
eqid |
|- ( mulGrp ` C ) = ( mulGrp ` C ) |
18 |
17
|
ringmgp |
|- ( C e. Ring -> ( mulGrp ` C ) e. Mnd ) |
19 |
16 18
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> ( mulGrp ` C ) e. Mnd ) |
20 |
1 2 3 4 5 6
|
mat2pmatf |
|- ( ( N e. Fin /\ R e. Ring ) -> T : B --> H ) |
21 |
7 20
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> T : B --> H ) |
22 |
1 2 3 4 5 6
|
mat2pmatmul |
|- ( ( N e. Fin /\ R e. CRing ) -> A. x e. B A. y e. B ( T ` ( x ( .r ` A ) y ) ) = ( ( T ` x ) ( .r ` C ) ( T ` y ) ) ) |
23 |
1 2 3 4 5 6
|
mat2pmat1 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( T ` ( 1r ` A ) ) = ( 1r ` C ) ) |
24 |
7 23
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> ( T ` ( 1r ` A ) ) = ( 1r ` C ) ) |
25 |
21 22 24
|
3jca |
|- ( ( N e. Fin /\ R e. CRing ) -> ( T : B --> H /\ A. x e. B A. y e. B ( T ` ( x ( .r ` A ) y ) ) = ( ( T ` x ) ( .r ` C ) ( T ` y ) ) /\ ( T ` ( 1r ` A ) ) = ( 1r ` C ) ) ) |
26 |
10 3
|
mgpbas |
|- B = ( Base ` ( mulGrp ` A ) ) |
27 |
17 6
|
mgpbas |
|- H = ( Base ` ( mulGrp ` C ) ) |
28 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
29 |
10 28
|
mgpplusg |
|- ( .r ` A ) = ( +g ` ( mulGrp ` A ) ) |
30 |
|
eqid |
|- ( .r ` C ) = ( .r ` C ) |
31 |
17 30
|
mgpplusg |
|- ( .r ` C ) = ( +g ` ( mulGrp ` C ) ) |
32 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
33 |
10 32
|
ringidval |
|- ( 1r ` A ) = ( 0g ` ( mulGrp ` A ) ) |
34 |
|
eqid |
|- ( 1r ` C ) = ( 1r ` C ) |
35 |
17 34
|
ringidval |
|- ( 1r ` C ) = ( 0g ` ( mulGrp ` C ) ) |
36 |
26 27 29 31 33 35
|
ismhm |
|- ( T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) <-> ( ( ( mulGrp ` A ) e. Mnd /\ ( mulGrp ` C ) e. Mnd ) /\ ( T : B --> H /\ A. x e. B A. y e. B ( T ` ( x ( .r ` A ) y ) ) = ( ( T ` x ) ( .r ` C ) ( T ` y ) ) /\ ( T ` ( 1r ` A ) ) = ( 1r ` C ) ) ) ) |
37 |
12 19 25 36
|
syl21anbrc |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) ) |