| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat2pmatbas.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 2 |  | mat2pmatbas.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | mat2pmatbas.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | mat2pmatbas.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | mat2pmatbas.c |  |-  C = ( N Mat P ) | 
						
							| 6 |  | mat2pmatbas0.h |  |-  H = ( Base ` C ) | 
						
							| 7 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 8 | 2 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 9 | 7 8 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) | 
						
							| 10 |  | eqid |  |-  ( mulGrp ` A ) = ( mulGrp ` A ) | 
						
							| 11 | 10 | ringmgp |  |-  ( A e. Ring -> ( mulGrp ` A ) e. Mnd ) | 
						
							| 12 | 9 11 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( mulGrp ` A ) e. Mnd ) | 
						
							| 13 | 4 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 14 | 7 13 | syl |  |-  ( R e. CRing -> P e. Ring ) | 
						
							| 15 | 5 | matring |  |-  ( ( N e. Fin /\ P e. Ring ) -> C e. Ring ) | 
						
							| 16 | 14 15 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> C e. Ring ) | 
						
							| 17 |  | eqid |  |-  ( mulGrp ` C ) = ( mulGrp ` C ) | 
						
							| 18 | 17 | ringmgp |  |-  ( C e. Ring -> ( mulGrp ` C ) e. Mnd ) | 
						
							| 19 | 16 18 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( mulGrp ` C ) e. Mnd ) | 
						
							| 20 | 1 2 3 4 5 6 | mat2pmatf |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B --> H ) | 
						
							| 21 | 7 20 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> T : B --> H ) | 
						
							| 22 | 1 2 3 4 5 6 | mat2pmatmul |  |-  ( ( N e. Fin /\ R e. CRing ) -> A. x e. B A. y e. B ( T ` ( x ( .r ` A ) y ) ) = ( ( T ` x ) ( .r ` C ) ( T ` y ) ) ) | 
						
							| 23 | 1 2 3 4 5 6 | mat2pmat1 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( T ` ( 1r ` A ) ) = ( 1r ` C ) ) | 
						
							| 24 | 7 23 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( T ` ( 1r ` A ) ) = ( 1r ` C ) ) | 
						
							| 25 | 21 22 24 | 3jca |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( T : B --> H /\ A. x e. B A. y e. B ( T ` ( x ( .r ` A ) y ) ) = ( ( T ` x ) ( .r ` C ) ( T ` y ) ) /\ ( T ` ( 1r ` A ) ) = ( 1r ` C ) ) ) | 
						
							| 26 | 10 3 | mgpbas |  |-  B = ( Base ` ( mulGrp ` A ) ) | 
						
							| 27 | 17 6 | mgpbas |  |-  H = ( Base ` ( mulGrp ` C ) ) | 
						
							| 28 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 29 | 10 28 | mgpplusg |  |-  ( .r ` A ) = ( +g ` ( mulGrp ` A ) ) | 
						
							| 30 |  | eqid |  |-  ( .r ` C ) = ( .r ` C ) | 
						
							| 31 | 17 30 | mgpplusg |  |-  ( .r ` C ) = ( +g ` ( mulGrp ` C ) ) | 
						
							| 32 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 33 | 10 32 | ringidval |  |-  ( 1r ` A ) = ( 0g ` ( mulGrp ` A ) ) | 
						
							| 34 |  | eqid |  |-  ( 1r ` C ) = ( 1r ` C ) | 
						
							| 35 | 17 34 | ringidval |  |-  ( 1r ` C ) = ( 0g ` ( mulGrp ` C ) ) | 
						
							| 36 | 26 27 29 31 33 35 | ismhm |  |-  ( T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) <-> ( ( ( mulGrp ` A ) e. Mnd /\ ( mulGrp ` C ) e. Mnd ) /\ ( T : B --> H /\ A. x e. B A. y e. B ( T ` ( x ( .r ` A ) y ) ) = ( ( T ` x ) ( .r ` C ) ( T ` y ) ) /\ ( T ` ( 1r ` A ) ) = ( 1r ` C ) ) ) ) | 
						
							| 37 | 12 19 25 36 | syl21anbrc |  |-  ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) ) |