| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat2pmatscmxcl.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mat2pmatscmxcl.k |  |-  K = ( Base ` A ) | 
						
							| 3 |  | mat2pmatscmxcl.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 4 |  | mat2pmatscmxcl.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | mat2pmatscmxcl.c |  |-  C = ( N Mat P ) | 
						
							| 6 |  | mat2pmatscmxcl.b |  |-  B = ( Base ` C ) | 
						
							| 7 |  | mat2pmatscmxcl.m |  |-  .* = ( .s ` C ) | 
						
							| 8 |  | mat2pmatscmxcl.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 9 |  | mat2pmatscmxcl.x |  |-  X = ( var1 ` R ) | 
						
							| 10 |  | simpll |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> N e. Fin ) | 
						
							| 11 | 4 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 12 | 11 | ad2antlr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> P e. Ring ) | 
						
							| 13 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 14 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 15 | 4 9 13 8 14 | ply1moncl |  |-  ( ( R e. Ring /\ L e. NN0 ) -> ( L .^ X ) e. ( Base ` P ) ) | 
						
							| 16 | 15 | ad2ant2l |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> ( L .^ X ) e. ( Base ` P ) ) | 
						
							| 17 |  | simpl |  |-  ( ( M e. K /\ L e. NN0 ) -> M e. K ) | 
						
							| 18 | 17 | anim2i |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> ( ( N e. Fin /\ R e. Ring ) /\ M e. K ) ) | 
						
							| 19 |  | df-3an |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. K ) <-> ( ( N e. Fin /\ R e. Ring ) /\ M e. K ) ) | 
						
							| 20 | 18 19 | sylibr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> ( N e. Fin /\ R e. Ring /\ M e. K ) ) | 
						
							| 21 | 3 1 2 4 5 6 | mat2pmatbas0 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. K ) -> ( T ` M ) e. B ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> ( T ` M ) e. B ) | 
						
							| 23 | 14 5 6 7 | matvscl |  |-  ( ( ( N e. Fin /\ P e. Ring ) /\ ( ( L .^ X ) e. ( Base ` P ) /\ ( T ` M ) e. B ) ) -> ( ( L .^ X ) .* ( T ` M ) ) e. B ) | 
						
							| 24 | 10 12 16 22 23 | syl22anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> ( ( L .^ X ) .* ( T ` M ) ) e. B ) |